Non-monotonic Probability Theory and Photon Polarization

被引:0
|
作者
Fred Kronz
机构
[1] University of Texas,Department of Philosophy
来源
关键词
Boolean operations; probability; quantum domain;
D O I
暂无
中图分类号
学科分类号
摘要
A non-monotonic theory of probability is put forward and shown to have applicability in the quantum domain. It is obtained simply by replacing Kolmogorov’s positivity axiom, which places the lower bound for probabilities at zero, with an axiom that reduces that lower bound to minus one. Kolmogorov’s theory of probability is monotonic, meaning that the probability of A is less then or equal to that of B whenever A entails B. The new theory violates monotonicity, as its name suggests; yet, many standard theorems are also theorems of the new theory since Kolmogorov’s other axioms are retained. What is of particular interest is that the new theory can accommodate quantum phenomena (photon polarization experiments) while preserving Boolean operations, unlike Kolmogorov’s theory. Although non-standard notions of probability have been discussed extensively in the physics literature, they have received very little attention in the philosophical literature. One likely explanation for that difference is that their applicability is typically demonstrated in esoteric settings that involve technical complications. That barrier is effectively removed for non-monotonic probability theory by providing it with a homely setting in the quantum domain. Although the initial steps taken in this paper are quite substantial, there is much else to be done, such as demonstrating the applicability of non-monotonic probability theory to other quantum systems and elaborating the interpretive framework that is provisionally put forward here. Such matters will be developed in other works.
引用
收藏
页码:449 / 472
页数:23
相关论文
共 50 条