Identifying monotonic and non-monotonic relationships

被引:9
|
作者
Yitzhaki, Shlomo [2 ]
Schechtman, Edna [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
[2] Hebrew Univ Jerusalem, IL-91905 Jerusalem, Israel
关键词
Regression; OLS; Gini; Transformation;
D O I
10.1016/j.econlet.2011.12.123
中图分类号
F [经济];
学科分类号
02 ;
摘要
We suggest graphical tools that indicate whether the relationship between variables in regression is monotonic. If not, the tools identify sections with different signs and inform on possibilities and types of monotonic transformations that can change the sign of the coefficient. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 25
页数:3
相关论文
共 50 条
  • [1] Monotonic and Non-Monotonic Infections on Networks
    Gutfraind, Alexander
    [J]. EXAMINING ROBUSTNESS AND VULNERABILITY OF NETWORKED SYSTEMS, 2014, 37 : 93 - 103
  • [2] Monotonic and Non-monotonic Context Delegation
    AL-Wahah, Mouiad
    Farkas, Csilla
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2019, : 449 - 460
  • [3] Dissipation in monotonic and non-monotonic relaxation to equilibrium
    Petersen, Charlotte F.
    Evans, Denis J.
    Williams, Stephen R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (07):
  • [4] Non-monotonic negativity
    Nishiguchi, S
    [J]. PACLIC 17: LANGUAGE, INFORMATION AND COMPUTATION, PROCEEDINGS, 2003, : 204 - 215
  • [5] Non-monotonic relationships between cell adhesion and protrusions
    Szewczyk, Dawid
    Yamamoto, Tetsuya
    Riveline, Daniel
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] Monotonic and Non-monotonic Embeddings of Anselm’s Proof
    Jacob Archambault
    [J]. Logica Universalis, 2017, 11 : 121 - 138
  • [7] Monotonic and Non-monotonic Embeddings of Anselm's Proof
    Archambault, Jacob
    [J]. LOGICA UNIVERSALIS, 2017, 11 (01) : 121 - 138
  • [8] Evaluation of monotonic and non-monotonic dissipation test results
    Imre, Emoke
    Rozsa, Pal
    Bates, Lachlan
    Fityus, Stephen
    [J]. COMPUTERS AND GEOTECHNICS, 2010, 37 (7-8) : 885 - 904
  • [9] Non-monotonic Explanation Functions
    Amgoud, Leila
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2021, 2021, 12897 : 19 - 31
  • [10] Non-monotonic fuzzy reasoning
    Castro, JL
    Trillas, E
    Zurita, JM
    [J]. FUZZY SETS AND SYSTEMS, 1998, 94 (02) : 217 - 225