Multivariate time series prediction of lane changing behavior using deep neural network

被引:0
|
作者
Jun Gao
Yi Lu Murphey
Honghui Zhu
机构
[1] Wuhan University of Technology,School of Logistics Engineering
[2] University of Michigan-Dearborn,Department of Electrical and Computer Engineering
来源
Applied Intelligence | 2018年 / 48卷
关键词
Multivariate time series; Lane change prediction; MTS-GCNN; Spectral clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Many real world pattern classification problems involve the process and analysis of multiple variables in temporal domain. This type of problem is referred to as Multivariate Time Series (MTS) problem. It remains a challenging problem due to the nature of time series data: high dimensionality, large data size and updating continuously. In this paper, we use three types of physiological signals from the driver to predict lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver’s response to the driving environment. A novel Group-wise Convolutional Neural Network, MTS-GCNN model is proposed for MTS pattern classification. In our MTS-GCNN model, we present a new structure learning algorithm in training stage. The algorithm exploits the covariance structure over multiple time series to partition input volume into groups, then learns the MTS-GCNN structure explicitly by clustering input sequences with spectral clustering. Different from other feature-based classification approaches, our MTS-GCNN can select and extract the suitable internal structure to generate temporal and spatial features automatically by using convolution and down-sample operations. The experimental results showed that, in comparison to other state-of-the-art models, our MTS-GCNN performs significantly better in terms of prediction accuracy.
引用
收藏
页码:3523 / 3537
页数:14
相关论文
共 50 条
  • [21] FORECASTING THE BEHAVIOR OF MULTIVARIATE TIME-SERIES USING NEURAL NETWORKS
    CHAKRABORTY, K
    MEHROTRA, K
    MOHAN, CK
    RANKA, S
    NEURAL NETWORKS, 1992, 5 (06) : 961 - 970
  • [22] Driver Lane-Changing Behavior Prediction Based on Deep Learning
    Wei, Cheng
    Hui, Fei
    Khattak, Asad J.
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [23] Functional Time Series Prediction Using Process Neural Network
    Ding Gang
    Lin Lin
    Zhong Shi-Sheng
    CHINESE PHYSICS LETTERS, 2009, 26 (09)
  • [24] Time series prediction using wavelet process neural network
    丁刚
    钟诗胜
    李洋
    Chinese Physics B, 2008, 17 (06) : 1998 - 2003
  • [25] A Time Series Prediction Model Using Constructive Neural Network
    Xiao, Yegui
    Doi, Kazunari
    Ikuta, Akira
    Wang, Jing
    2012 IEEE 11TH INTERNATIONAL CONFERENCE ON CYBERNETIC INTELLIGENT SYSTEMS (CIS), 2012,
  • [26] Time series prediction using wavelet process neural network
    Ding Gang
    Zhong Shi-Sheng
    Li Yang
    CHINESE PHYSICS B, 2008, 17 (06) : 1998 - 2003
  • [27] A Deep Neural Network for Anomaly Detection and Forecasting for Multivariate Time Series in Smart City
    He, Junjie
    Dong, Min
    Bi, Sheng
    Zhao, Weijie
    Liao, Xutao
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 615 - 620
  • [28] A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data
    Zhang, Chuxu
    Song, Dongjin
    Chen, Yuncong
    Feng, Xinyang
    Lumezanu, Cristian
    Cheng, Wei
    Ni, Jingchao
    Zong, Bo
    Chen, Haifeng
    Chawla, Nitesh V.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1409 - 1416
  • [29] A Deep Neural Network Framework for Multivariate Time Series Classification With Positive and Unlabeled Data
    Ienco, Dino
    IEEE ACCESS, 2023, 11 : 20877 - 20884
  • [30] Hierarchical Neural Networks for Multivariate Time Series Prediction
    Xu, Meiling
    Han, Min
    Wang, Xinying
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6971 - 6976