Development of a design for the GT-MHR energy conversion unit

被引:0
|
作者
V. I. Kostin
N. G. Kodochigov
S. E. Belov
A. V. Vasyaev
V. F. Golovko
A. Shenoy
机构
[1] I. I. Afrikantov OKBM,
[2] General Atomics Company,undefined
来源
Atomic Energy | 2007年 / 102卷
关键词
Frequency Converter; Conversion Unit; Recovery Unit; Oiled Bearing; Electromagnetic Bearing;
D O I
暂无
中图分类号
学科分类号
摘要
Since 1995, the General Atomics Company (USA) and OKBM have been jointly developing a design for GT-MHR — a modular helium-cooled reactor and energy-conversion unit with a direct gas-turbine cycle. The reactor power is 600 MW, and the reactor is cooled with helium at pressure 7 MPa. The energy conversion unit consists of a gas turbomachine, a recovery unit, preliminary and intermediate heat exchangers, and a generator. The turbomachine consists of a turbine, compressor, and a generator. The shaft of the turbomachine turns at a speed of 4400 rpm. Alternative designs for the energy conversion block are analyzed, which will enable making a final choice of a variant for its configuration.
引用
收藏
页码:67 / 74
页数:7
相关论文
共 50 条
  • [21] International cooperation in developing the GT-MHR evolution and program status
    Simon, WA
    Shenoy, AS
    HIGH TEMPERATURE GAS COOLED REACTOR APPLICATIONS AND FUTURE PROSPECTS, 1998, : 67 - 79
  • [22] Computational and experimental investigations of the neutron-physical characteristics of the GT-MHR core
    N. G. Kodochigov
    Yu. P. Sukharev
    E. V. Marova
    V. F. Boyarinov
    V. I. Bryzgalov
    E. S. Glushkov
    E. A. Gomin
    M. I. Gurevich
    V. D. Davidenko
    G. V. Kompaniets
    A. M. Krutov
    V. A. Nevinitsa
    P. A. Fomichenko
    V. F. Tsibul’skii
    M. S. Yudkevich
    E. F. Mitenkova
    N. V. Novikov
    Atomic Energy, 2007, 102 : 75 - 81
  • [23] Utilisation of waste heat from GT-MHR and PBMR reactors for nuclear desalination
    Dardour, Saied
    Nisan, Simon
    Charbit, Francoise
    DESALINATION, 2007, 205 (1-3) : 254 - 268
  • [24] Project of the GT-MHR high-temperature helium reactor with gas turbine
    Kiryushin, AI
    Kodochigov, NG
    Kouzavkov, NG
    PonomarevStepnoi, NN
    Gloushkov, ES
    Grebennik, VN
    NUCLEAR ENGINEERING AND DESIGN, 1997, 173 (1-3) : 119 - 129
  • [25] Evaluation and optimization of General Atomics' GT-MHR reactor cavity cooling system using an axiomatic design approach
    Thielman, J
    Ge, P
    Wu, Q
    Parme, L
    NUCLEAR ENGINEERING AND DESIGN, 2005, 235 (13) : 1389 - 1402
  • [26] Computational and experimental investigations of the neutron-physical characteristics of the GT-MHR core
    Kodochigov, N. G.
    Sukharev, Yu. P.
    Marova, E. V.
    Boyarinov, V. F.
    Bryzgalov, V. I.
    Glushkov, E. S.
    Gomin, E. A.
    Gurevich, M. I.
    Davidenko, V. D.
    Kompaniets, G. V.
    Krutov, A. M.
    Nevinitsa, V. A.
    Fomichenko, P. A.
    Tsibul'skii, V. F.
    Yudkevich, M. S.
    Mitenkova, E. F.
    Novikov, N. V.
    ATOMIC ENERGY, 2007, 102 (01) : 75 - 81
  • [27] Life Cycle Assessment of the New Generation GT-MHR Nuclear Power Plant
    Koltun, Paul
    Tsykalo, Alfred
    Novozhilov, Vasily
    ENERGIES, 2018, 11 (12)
  • [28] On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization
    Zare, V.
    Mahmoudi, S. M. S.
    Yari, M.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 90 : 364 - 374
  • [29] Proposal and analysis of a new combined cogeneration system based on the GT-MHR cycle
    Zare, V.
    Yari, M.
    Mahmoudi, S. M. S.
    DESALINATION, 2012, 286 : 417 - 428
  • [30] RESULTS OF NEUTRONIC BENCHMARK ANALYSIS FOR A HIGH TEMPERATURE REACTOR OF THE GT-MHR TYPE
    Boyarinov, Viktor F.
    Bryzgalov, Vladimir I.
    Davidenko, Vladimir D.
    Fomichenko, Peter A.
    Glushkov, Evgeny S.
    Gomin, Evgeny A.
    Gurevich, Mikhail I.
    Kodochigov, Nikolay G.
    Marova, Elena V.
    Mitenkova, Elena F.
    Novikov, Nikolay V.
    Osipov, Sergey L.
    Sukharev, Yury P.
    Tsibulsky, Viktor F.
    Yudkevich, Mikhail S.
    PROCEEDINGS OF THE 4TH INTERNATIONAL TOPICAL MEETING ON HIGH TEMPERATURE REACTOR TECHNOLOGY - 2008, VOL 2, 2009, : 329 - 335