Numerical differentiation by radial basis functions approximation

被引:0
|
作者
T. Wei
Y. C. Hon
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] City University of Hong Kong,Department of Mathematics
来源
关键词
numerical differentiation; radial basis functions; Tikhonov regularization; 65D25; 45D05; 35R25;
D O I
暂无
中图分类号
学科分类号
摘要
Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unknown partial derivatives from scattered noisy data in multi-dimension. Numerical examples verify that the proposed regularization strategy with the a posteriori choice rule is effective and stable to solve the numerical differential problem.
引用
收藏
页码:247 / 272
页数:25
相关论文
共 50 条
  • [1] Numerical differentiation by radial basis functions approximation
    Wei, T.
    Hon, Y. C.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (03) : 247 - 272
  • [2] Numerical Caputo Differentiation by Radial Basis Functions
    Ming Li
    Yujiao Wang
    Leevan Ling
    [J]. Journal of Scientific Computing, 2015, 62 : 300 - 315
  • [3] Numerical Caputo Differentiation by Radial Basis Functions
    Li, Ming
    Wang, Yujiao
    Ling, Leevan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) : 300 - 315
  • [4] NUMERICAL APPROXIMATION OF THE SMOLUCHOWSKI EQUATION USING RADIAL BASIS FUNCTIONS
    Helzel, Christiane
    Schneiders, Maximilian
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (01) : 176 - 194
  • [5] Approximation with fractal radial basis functions
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454
  • [6] Global response approximation with radial basis functions
    Fang, HB
    Horstemeyer, MF
    [J]. ENGINEERING OPTIMIZATION, 2006, 38 (04) : 407 - 424
  • [7] APPROXIMATION BY SUPERPOSITION OF SIGMOIDAL AND RADIAL BASIS FUNCTIONS
    MHASKAR, HN
    MICCHELLI, CA
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1992, 13 (03) : 350 - 373
  • [8] Approximation of Bivariate Functions by Generalized Wendland Radial Basis Functions
    Kouibia, Abdelouahed
    Gonzalez, Pedro
    Pasadas, Miguel
    Mustafa, Bassim
    Yakhlef, Hossain Oulad
    Omri, Loubna
    [J]. MATHEMATICS, 2024, 12 (16)
  • [9] DATA APPROXIMATION USING POLYHARMONIC RADIAL BASIS FUNCTIONS
    Segeth, Karel
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20, 2021, : 129 - 138
  • [10] Vector field approximation using radial basis functions
    Cervantes Cabrera, Daniel A.
    Gonzalez-Casanova, Pedro
    Gout, Christian
    Hector Juarez, L.
    Rafael Resendiz, L.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 163 - 173