New analytic properties of nonstandard Sobolev-type Charlier orthogonal polynomials

被引:0
|
作者
Edmundo J. Huertas
Anier Soria-Lorente
机构
[1] Universidad Politécnica de Madrid,Departamento de Ingeniería Civil: Hidráulica y Ordenación del Territorio E.T.S. de Ingeniería Civil
[2] Granma University,Department of Basic Sciences
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Charlier polynomials; Sobolev-type polynomials; Discrete kernel polynomials; Discrete quasi-orthogonal polynomials; 33C47;
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we consider the sequence {Qnλ}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{Q_{n}^{\lambda }\}_{n\geq 0}$\end{document} of monic polynomials orthogonal with respect to the following inner product involving differences 〈p,q〉λ=∫0∞pxqxdψ(a)(x)+λΔp(c)Δq(c),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle p,q\rangle_{\lambda }={\int}_{0}^{\infty }p\left( x\right) q\left( x\right) d\psi^{(a)}(x)+\lambda {\Delta} p(c){\Delta} q(c), $$\end{document}
引用
收藏
页码:41 / 68
页数:27
相关论文
共 50 条
  • [31] On Freud–Sobolev type orthogonal polynomials
    Luis E. Garza
    Edmundo J. Huertas
    Francisco Marcellán
    [J]. Afrika Matematika, 2019, 30 : 505 - 528
  • [32] Analytic properties of Laguerre-type orthogonal polynomials
    Duenas, Herbert
    Huertas, Edmundo J.
    Marcellan, Francisco
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (02) : 107 - 122
  • [33] Differential operators having Sobolev-type Laguerre polynomials as eigenfunctions: new developments
    Bavinck, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 183 - 193
  • [34] Asymptotic properties of Sobolev orthogonal polynomials
    Martinez-Finkelshtein, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 491 - 510
  • [35] Second-order difference equation for Sobolev-type orthogonal polynomials: Part I: theoretical results
    Filipuk, Galina
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (07) : 971 - 989
  • [36] Differential operators having Sobolev-type Jacobi polynomials as eigenfunctions
    Bavinck, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 151 (02) : 271 - 295
  • [37] Differential operators having Sobolev-type Gegenbauer polynomials as eigenfunctions
    Bavinck, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) : 23 - 42
  • [38] On zero behavior of higher-order Sobolev-type discrete q-Hermite I orthogonal polynomials
    Huertas, Edmundo J.
    Lastra, Alberto
    Soria-Lorente, Anier
    Soto-Larrosa, Victor
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [39] Second-Order Difference Equation for Sobolev-Type Orthogonal Polynomials. Part II: Computational Tools
    Filipuk, Galina
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (04) : 960 - 979
  • [40] Zeros of Sobolev orthogonal polynomials of Hermite type
    de Bruin, MG
    Groenevelt, WGM
    Meijer, HG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) : 135 - 166