Non-Almost Periodicity of Parallel Transports for Homogeneous Connections

被引:0
|
作者
Johannes Brunnemann
Christian Fleischhack
机构
[1] Universität Paderborn,Institut für Mathematik
[2] Universität Hamburg,Department Mathematik
[3] Max-Planck-Institut für Mathematik in den Naturwissenschaften,undefined
关键词
Parallel transports; Spaces of connections; Almost periodicity; Qualitative theory of ODEs; Loop quantum gravity; Cosmological models; 34C27; 53C05; 83F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal A}$\end{document} be the affine space of all connections in an SU(2) principal fibre bundle over ℝ3. The set of homogeneous isotropic connections forms a line l in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal A}$\end{document}. We prove that the parallel transports for general, non-straight paths in the base manifold do not depend almost periodically on l. Consequently, the embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l \hookrightarrow {\cal A}$\end{document} does not continuously extend to an embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{l} \hookrightarrow \overline{\cal A}$\end{document} of the respective compactifications. Here, the Bohr compactification \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{l}$\end{document} corresponds to the configuration space of homogeneous isotropic loop quantum cosmology and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\cal A}$\end{document} to that of loop quantum gravity. Analogous results are given for the anisotropic case.
引用
收藏
页码:299 / 315
页数:16
相关论文
共 50 条