Artificial Neural Network Prediction of Ultimate Strength of Unidirectional T-300/914 Tensile Specimens Using Acoustic Emission Response

被引:0
|
作者
T. Sasikumar
S. Rajendraboopathy
K. M. Usha
E. S. Vasudev
机构
[1] Anna University,College of Engineering Guindy
[2] Anna University,Dept. of Mech. Engg., CEG
[3] ISRO,CCTD, CMSE, Vikram Sarabai Space Center
[4] ISRO,Vikram Sarabai Space Centre
来源
关键词
Artificial neural network; Back propagation; Acoustic emission; Amplitude; Prediction; Composites; Tensile strength;
D O I
暂无
中图分类号
学科分类号
摘要
Acoustic Emission (AE) Monitoring was used to evaluate unidirectional carbon epoxy specimens when tensile loaded with a 100 kN Universal Testing Machine. A series of eighteen samples were loaded to failure to generate AE data for this analysis. After data acquisition, AE response from each test was filtered to include only data collected up to 50% of the actual failure load for further analysis. Amplitude, Duration and Energy are effective parameters utilized to differentiate various failure modes in composites viz., matrix crazing, fiber cut, and delamination with several sub categories such as matrix splitting, fiber/matrix debonding, fiber pull-out etc.
引用
收藏
页码:127 / 133
页数:6
相关论文
共 50 条
  • [31] Application of an artificial neural network model to predict the ultimate tensile strength of friction-welded titanium tubes
    R. Palanivel
    I. Dinaharan
    R. F. Laubscher
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [32] Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 F1111 Friction Stir Welding Butt Joints Using Artificial Neural Network
    De Filippis, Luigi Alberto Ciro
    Serio, Livia Maria
    Facchini, Francesco
    Mummolo, Giovanni
    Ludovico, Antonio Domenico
    [J]. MATERIALS, 2016, 9 (11):
  • [33] PREDICTION OF THE COMPRESSIVE STRENGTH OF FOAM CONCRETE USING THE ARTIFICIAL NEURAL NETWORK
    Husnah
    Tisnawan, Rahmat
    Maizir, Harnedi
    Suryanita, Reni
    [J]. INTERNATIONAL JOURNAL OF GEOMATE, 2022, 23 (99): : 134 - 140
  • [34] Prediction of strength of reinforced lightweight soil using an artificial neural network
    Park, H. I.
    Kim, Y. T.
    [J]. ENGINEERING COMPUTATIONS, 2011, 28 (5-6) : 600 - 615
  • [35] Prediction of compressive strength of geopolymer composites using an artificial neural network
    Yadollahi, M.M.
    Benli, A.
    Demirboʇa, R.
    [J]. Materials Research Innovations, 2015, 19 (06) : 453 - 458
  • [36] Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton
    Amor, Nesrine
    Noman, Muhammad Tayyab
    Ismail, Adla
    Petru, Michal
    Sebastian, Neethu
    [J]. POLYMERS, 2022, 14 (05)
  • [37] Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network
    Kopal, Ivan
    Labaj, Ivan
    Harnicarova, Marta
    Valicek, Jan
    Hruby, Dusan
    [J]. POLYMERS, 2018, 10 (06)
  • [38] Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network
    Wilkinson, P
    Reuben, RL
    Jones, JDC
    Barton, JS
    Hand, DP
    Carolan, TA
    Kidd, SR
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1999, 13 (06) : 955 - 966
  • [39] Prediction on the fatigue life of butt-welded specimens using artificial neural network
    Kim, Kyoung Nam
    Lee, Seong Haeng
    Jung, Kyoung Sup
    [J]. STEEL AND COMPOSITE STRUCTURES, 2009, 9 (06): : 557 - 568
  • [40] Prediction on the fatigue life of butt-welded specimens using artificial neural network
    School of Civil Engineering, Chungbuk National University, Cheongju, Korea, Republic of
    不详
    [J]. Steel Compos. Struct., 2009, 6 (557-568):