Artificial Neural Network Prediction of Ultimate Strength of Unidirectional T-300/914 Tensile Specimens Using Acoustic Emission Response

被引:0
|
作者
T. Sasikumar
S. Rajendraboopathy
K. M. Usha
E. S. Vasudev
机构
[1] Anna University,College of Engineering Guindy
[2] Anna University,Dept. of Mech. Engg., CEG
[3] ISRO,CCTD, CMSE, Vikram Sarabai Space Center
[4] ISRO,Vikram Sarabai Space Centre
来源
关键词
Artificial neural network; Back propagation; Acoustic emission; Amplitude; Prediction; Composites; Tensile strength;
D O I
暂无
中图分类号
学科分类号
摘要
Acoustic Emission (AE) Monitoring was used to evaluate unidirectional carbon epoxy specimens when tensile loaded with a 100 kN Universal Testing Machine. A series of eighteen samples were loaded to failure to generate AE data for this analysis. After data acquisition, AE response from each test was filtered to include only data collected up to 50% of the actual failure load for further analysis. Amplitude, Duration and Energy are effective parameters utilized to differentiate various failure modes in composites viz., matrix crazing, fiber cut, and delamination with several sub categories such as matrix splitting, fiber/matrix debonding, fiber pull-out etc.
引用
收藏
页码:127 / 133
页数:6
相关论文
共 50 条
  • [1] Artificial Neural Network Prediction of Ultimate Strength of Unidirectional T-300/914 Tensile Specimens Using Acoustic Emission Response
    Sasikumar, T.
    Rajendraboopathy, S.
    Usha, K. M.
    Vasudev, E. S.
    [J]. JOURNAL OF NONDESTRUCTIVE EVALUATION, 2008, 27 (04) : 127 - 133
  • [2] Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data
    V.Arumugam
    R.Naren Shankar
    B.T.N.Sridhar
    A.Joseph Stanley
    [J]. Journal of Materials Science & Technology, 2010, 26 (08) : 725 - 729
  • [3] Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data
    Arumugam, V.
    Shankar, R. Naren
    Sridhar, B. T. N.
    Stanley, A. Joseph
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (08) : 725 - 729
  • [4] Failure strength prediction of unidirectional tensile coupons using acoustic emission peak amplitude and energy parameter with artificial neural networks
    Sasikumar, T.
    RajendraBoopathy, S.
    Usha, K. M.
    Vasudev, E. S.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (7-8) : 1151 - 1155
  • [5] Prediction of ultimate strength of shale using artificial neural network
    Moshrefi, S.
    Shahriar, K.
    Ramezanzadeh, A.
    Goshtasbi, K.
    [J]. JOURNAL OF MINING AND ENVIRONMENT, 2018, 9 (01): : 91 - 105
  • [6] ARTIFICIAL NEURAL NETWORK PREDICTION OF ULTIMATE TENSILE STRENGTH OF RANDOMLY ORIENTED SHORT GLASS FIBRE-EPOXY COMPOSITE SPECIMEN USING ACOUSTIC EMISSION PARAMETERS
    Ramkumar, S.
    [J]. ADVANCED COMPOSITES LETTERS, 2015, 24 (05) : 119 - 124
  • [7] Artificial neural network a tool for predicting failure strength of composite tensile coupons using acoustic emission technique
    S. Rajendraboopathy
    T. Sasikumar
    K. M. Usha
    E. S. Vasudev
    [J]. The International Journal of Advanced Manufacturing Technology, 2009, 44 : 399 - 404
  • [8] Artificial neural network a tool for predicting failure strength of composite tensile coupons using acoustic emission technique
    Rajendraboopathy, S.
    Sasikumar, T.
    Usha, K. M.
    Vasudev, E. S.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 44 (3-4): : 399 - 404
  • [9] Prediction of the ultimate tensile strength in API x70 line pipe steel using an artificial neural network model
    Saoudi, Adel
    Lerari, Djahida
    Khamouli, Farida
    Atoui, L’Hadi
    Bachari, Khaldoun
    [J]. Solid State Phenomena, 2019, 297 : 71 - 81
  • [10] Tensile Strength Prediction of Fiberglass Polymer Composites Using Artificial Neural Network Model
    Spanu, Paulina
    Abaza, Bogdan Felician
    [J]. MATERIALE PLASTICE, 2022, 59 (02) : 111 - 118