Incidence structures and Stone–Priestley duality

被引:0
|
作者
Mohamed Bekkali
Maurice Pouzet
Driss Zhani
机构
[1] Université Sidi Mohamed Ben Abdellah,Département de Mathématiques, Faculté des Sciences et Techniques
[2] Université Claude-Bernard Lyon1,PCS
关键词
Incidence structure; Galois lattice; Boolean algebra; Distributive lattice; 03G05; 03G10; 08A62;
D O I
暂无
中图分类号
学科分类号
摘要
We observe that if R: = (I,ρ, J) is an incidence structure, viewed as a matrix, then the topological closure of the set of columns is the Stone space of the Boolean algebra generated by the rows. As a consequence, we obtain that the topological closure of the collection of principal initial segments of a poset P is the Stone space of the Boolean algebra Tailalg (P) generated by the collection of principal final segments of P, the so-called tail-algebra of P. Similar results concerning Priestley spaces and distributive lattices are given. A generalization to incidence structures valued by abstract algebras is considered.
引用
收藏
页码:27 / 38
页数:11
相关论文
共 50 条
  • [1] Incidence structures and Stone-Priestley duality
    Bekkali, Mohamed
    Pouzet, Maurice
    Zhani, Driss
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2007, 49 (1-4) : 27 - 38
  • [2] Priestley Duality for Quasi-Stone Algebras
    Gaitán H.
    Studia Logica, 2000, 64 (1) : 83 - 92
  • [3] Priestley's duality from Stone's
    Fleisher, I
    ADVANCES IN APPLIED MATHEMATICS, 2000, 25 (03) : 233 - 238
  • [4] Localic Priestley duality
    Townsend, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 116 (1-3) : 323 - 335
  • [5] Priestley Duality for Bilattices
    A. Jung
    U. Rivieccio
    Studia Logica, 2012, 100 : 223 - 252
  • [6] Priestley Duality for Bilattices
    Jung, A.
    Rivieccio, U.
    STUDIA LOGICA, 2012, 100 (1-2) : 223 - 252
  • [7] Algebraic frames in Priestley duality
    Bezhanishvili, Guram
    Melzer, Sebastian D.
    ALGEBRA UNIVERSALIS, 2025, 86 (01)
  • [8] Lattice subordinations and Priestley duality
    Guram Bezhanishvili
    Algebra universalis, 2013, 70 : 359 - 377
  • [9] Lattice subordinations and Priestley duality
    Bezhanishvili, Guram
    ALGEBRA UNIVERSALIS, 2013, 70 (04) : 359 - 377
  • [10] A non-commutative Priestley duality
    Bauer, Andrej
    Cvetko-Vah, Karin
    Gehrke, Mai
    van Gool, Samuel J.
    Kudryavtseva, Ganna
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (12) : 1423 - 1438