Incidence structures and Stone–Priestley duality

被引:0
|
作者
Mohamed Bekkali
Maurice Pouzet
Driss Zhani
机构
[1] Université Sidi Mohamed Ben Abdellah,Département de Mathématiques, Faculté des Sciences et Techniques
[2] Université Claude-Bernard Lyon1,PCS
关键词
Incidence structure; Galois lattice; Boolean algebra; Distributive lattice; 03G05; 03G10; 08A62;
D O I
暂无
中图分类号
学科分类号
摘要
We observe that if R: = (I,ρ, J) is an incidence structure, viewed as a matrix, then the topological closure of the set of columns is the Stone space of the Boolean algebra generated by the rows. As a consequence, we obtain that the topological closure of the collection of principal initial segments of a poset P is the Stone space of the Boolean algebra Tailalg (P) generated by the collection of principal final segments of P, the so-called tail-algebra of P. Similar results concerning Priestley spaces and distributive lattices are given. A generalization to incidence structures valued by abstract algebras is considered.
引用
收藏
页码:27 / 38
页数:11
相关论文
共 50 条
  • [31] Deriving Dualities in Pointfree Topology from Priestley Duality
    G. Bezhanishvili
    S. Melzer
    Applied Categorical Structures, 2023, 31
  • [32] General stone duality
    Erné, M
    TOPOLOGY AND ITS APPLICATIONS, 2004, 137 (1-3) : 125 - 158
  • [33] An Extension of the Stone Duality
    M. Sonia
    P. Sabogal
    Acta Mathematica Hungarica, 2000, 88 : 205 - 211
  • [34] An extension of the Stone duality
    Sabogal, SM
    ACTA MATHEMATICA HUNGARICA, 2000, 88 (03) : 205 - 211
  • [35] Stone duality for lattices
    C. Hartonas
    J.M. Dunn
    algebra universalis, 1997, 37 : 391 - 401
  • [36] Stone duality for lattices
    Hartonas, C
    Dunn, JM
    ALGEBRA UNIVERSALIS, 1997, 37 (03) : 391 - 401
  • [37] Priestley duality for order-preserving maps into distributive lattices
    Farley, JD
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1996, 13 (01): : 65 - 98
  • [38] Regular languages and stone duality
    Pippenger, N
    THEORY OF COMPUTING SYSTEMS, 1997, 30 (02) : 121 - 134
  • [39] GENERAL STONE GELFAND DUALITY
    LAMBEK, J
    RATTRAY, BA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A521 - A521
  • [40] Stone duality for lattice expansions
    Hartonas, Chrysafis
    LOGIC JOURNAL OF THE IGPL, 2018, 26 (05) : 475 - 504