Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity

被引:0
|
作者
Na An
机构
[1] Shandong Normal University,School of Mathematics and Statistics
关键词
Time-fractional diffusion; Caputo derivative; Finite element method; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a time-fractional diffusion problem with a time-space dependent diffusivity is considered. The solution of such a problem has a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document}. Based on the L1 scheme in time on a graded mesh and the conforming finite element method in space on a uniform mesh, the fully discrete L1 conforming finite element method (L1 FEM) of a time-fractional diffusion problem is investigated. The error analysis is based on a nonstandard discrete Gronwall inequality. The final superconvergence result shows that an optimal grading of the temporal mesh should be selected as r≥(2−α)/α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq (2-\alpha )/\alpha $\end{document}. Numerical results confirm that our analysis is sharp.
引用
收藏
相关论文
共 50 条
  • [1] Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity
    An, Na
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] A Galerkin finite element scheme for time-space fractional diffusion equation
    Zhao, Zhengang
    Zheng, Yunying
    Guo, Peng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1212 - 1225
  • [3] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [4] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82
  • [5] SUPERCONVERGENCE ANALYSIS FOR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NONCONFORMING MIXED FINITE ELEMENT METHOD
    Zhang, Houchao
    Shi, Dongyang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 488 - 505
  • [6] Superconvergence analysis of finite element method for time-fractional Thermistor problem
    Shi, Dongyang
    Yang, Huaijun
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 31 - 42
  • [7] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    Numerical Algorithms, 2016, 72 : 749 - 767
  • [8] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [9] Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations
    Gu, Qiling
    Chen, Yanping
    Huang, Yunqing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [10] Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations
    Qiling Gu
    Yanping Chen
    Yunqing Huang
    Computational and Applied Mathematics, 2022, 41