Estimators for ROC curves with missing biomarkers values and informative covariates

被引:0
|
作者
Ana M. Bianco
Graciela Boente
Wenceslao González–Manteiga
Ana Pérez–González
机构
[1] Universidad de Buenos Aires and CONICET,
[2] Universidad de Santiago de Compostela,undefined
[3] Universidad de Vigo,undefined
来源
关键词
Covariates; Consistency; Missing data; ROC curves;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present three estimators of the ROC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {ROC}}$$\end{document} curve when missing observations arise among the biomarkers. Two of the procedures assume that we have covariates that allow to estimate the propensity and and from this information, the estimators are obtained using an inverse probability weighting method or a smoothed version of it. The third one assumes that the covariates are related to the biomarkers through a regression model which enables us to construct convolution–based estimators of the distribution and quantile functions. Consistency results are obtained under mild conditions. Through a numerical study we evaluate the finite sample performance of the different proposals. A real data set is also analysed.
引用
收藏
页码:931 / 956
页数:25
相关论文
共 50 条