Hopf Categories

被引:0
|
作者
E. Batista
S. Caenepeel
J. Vercruysse
机构
[1] Universidade Federal de Santa Catarina,Departamento de Matemática
[2] Vrije Universiteit Brussel,Faculty of Engineering
[3] Université Libre de Bruxelles,Département de Mathématique
来源
关键词
Enriched category; Hopf group coalgebra; Weak Hopf algebra; Duoidal category; Galois coobject; Morita context; Fundamental theorem; 16T05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce Hopf categories enriched over braided monoidal categories. The notion is linked to several recently developed notions in Hopf algebra theory, such as Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the fundamental theorem for Hopf modules and some of its applications to Hopf categories.
引用
收藏
页码:1173 / 1216
页数:43
相关论文
共 50 条
  • [41] Coquasitriangular Hopf group coalgebras and braided monoidal categories
    Meiling Zhu
    Huixiang Chen
    Libin Li
    Frontiers of Mathematics in China, 2011, 6 : 1009 - 1020
  • [42] Module categories, weak Hopf algebras and modular invariants
    Victor Ostrik
    Transformation Groups, 2003, 8 : 177 - 206
  • [43] Comodule theories in Grothendieck categories and relative Hopf objects
    Balodi, Mamta
    Banerjee, Abhishek
    Kour, Surjeet
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [44] The construction of braided tensor categories from Hopf braces
    Zhu, Haixing
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3171 - 3188
  • [45] Coquasitriangular Hopf group coalgebras and braided monoidal categories
    Zhu, Meiling
    Chen, Huixiang
    Li, Libin
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (05) : 1009 - 1020
  • [46] On the tensor product of bimodule categories over Hopf algebras
    Martín Mombelli
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 173 - 192
  • [47] BRAIDED MONOIDAL CATEGORIES AND DOI-HOPF MODULES FOR MONOIDAL HOM-HOPF ALGEBRAS
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 79 - 103
  • [48] On Braided Lie Structures of Algebras in the Categories of Weak Hopf Bimodules
    Wang, Shuan-hong
    Zhu, Hai-xing
    ALGEBRA COLLOQUIUM, 2010, 17 (04) : 685 - 698
  • [49] Yetter-Drinfeld categories for quasi-Hopf algebras
    Bulacu, D
    Caenepeel, S
    Panaite, F
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (01) : 1 - 35
  • [50] Induction Functors for Hom-Doi-Hopf Module Categories
    Jia, Ling
    Xu, Xiangyuan
    FILOMAT, 2022, 36 (10) : 3241 - 3247