Conservation Laws for the Schrödinger—Newton Equations

被引:0
|
作者
G. Gubbiotti
M. C. Nucci
机构
[1] Università di Perugia & INFN Sezione Perugia,Dipartimento di Matematica e Informatica
关键词
Schrödinger—Newton equations; calculus of variations; Noether’s theorem; 02.30.Jr; 02.30.Xx; 11.30.-j;
D O I
暂无
中图分类号
学科分类号
摘要
In this Letter a first-order Lagrangian for the Schrödinger—Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schrödinger—Newton equations, Nonlinearity19(7) (2006) 1507–1514] in order to find conservation laws of the Schrödinger—Newton equations.
引用
收藏
页码:292 / 299
页数:7
相关论文
共 50 条
  • [31] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [32] Compatible Conservation Laws and Discrete Counterparts for the Time-Fractional Nonlinear Schrödinger Equation
    Pin Lyu
    Hong-lin Liao
    Seakweng Vong
    Journal of Scientific Computing, 2025, 103 (2)
  • [33] Conservation laws and exact solutions for coupled Schrödinger–KdV dynamical models arising in plasma
    Shrouk Wael
    S M Maowad
    O H El-Kalaawy
    Pramana, 96
  • [34] Spacetime Fluctuations and a Stochastic Schrödinger–Newton Equation
    Sayantani Bera
    Priyanka Giri
    Tejinder P. Singh
    Foundations of Physics, 2017, 47 : 897 - 910
  • [35] A new (3 + 1)-dimensional Schrödinger equation: derivation, soliton solutions and conservation laws
    Gangwei Wang
    Nonlinear Dynamics, 2021, 104 : 1595 - 1602
  • [36] Attractors of nonautonomous Schrödinger equations
    Yu-rong L.
    Zeng-rong L.
    Yong-ai Z.
    Applied Mathematics and Mechanics, 2001, 22 (2) : 180 - 189
  • [37] Attractors of Nonautonomous Schrödinger Equations
    Yu-rong Liu
    Zeng-rong Liu
    Yong-ai Zheng
    Applied Mathematics and Mechanics, 2001, 22 : 180 - 189
  • [38] On the quasilinear Schrödinger equations on tori
    Iandoli, Felice
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1913 - 1930
  • [39] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [40] Dichotomous concentrating solutions for a Schrödinger–Newton equation
    Hui-Sheng Ding
    Mengmeng Hu
    Benniao Li
    Calculus of Variations and Partial Differential Equations, 2023, 62