In this paper, we propose a new Bayesian quantile regression estimator using conditional empirical likelihood as the working likelihood function. We show that the proposed estimator is asymptotically efficient and the confidence interval constructed is asymptotically valid. Our estimator has low computation cost since the posterior distribution function has explicit form. The finite sample performance of the proposed estimator is evaluated through Monte Carlo studies.
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Li, Mei
Ratnasingam, Suthakaran
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USABeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Ratnasingam, Suthakaran
Ning, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USABeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Zhao, Peixin
Cheng, Suli
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Cheng, Suli
Zhou, Xiaoshuang
论文数: 0引用数: 0
h-index: 0
机构:
Dezhou Univ, Sch Math & Big Data, Dezhou 253023, Shandong, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China