Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress

被引:0
|
作者
Mohammad Arefian
Saeid Malekzadeh Shafaroudi
机构
[1] Ferdowsi University of Mashhad,Plant Biotechnology and Breeding Department, College of Agriculture
[2] Ferdowsi University of Mashhad,Plant Biotechnology and Breeding Department, College of Agriculture
来源
关键词
Chickpea; Gene expression; Proline; Real-time PCR; RT-PCR; Salinity;
D O I
暂无
中图分类号
学科分类号
摘要
Salinity is a major abiotic stress, which reduces productivity of a broad range of crops, especially legumes. This study provides a comparative overview of physiological responses and expression patterns of critical genes in chickpea genotypes during five time courses of NaCl treatment. Considering lipid peroxidation (MDA), electrolyte leakage, proline content and relative water content which are considered to be direct indicators of salinity tolerance, the Flip 97-43c (T1) and Flip 97-196c (S2) genotypes displayed, respectively, maximum and minimum maintenance of cell membrane integrity, osmolyte accumulation and water retention capacity during salinity stress. Relative gene expression analysis of extreme genotypes was carried out using semi-quantitative RT-PCR and the up- and down regulation of the genes was confirmed by real-time qPCR for nine putative salinity responsive genes. However, up-regulation of salinity responsive genes and sequences including late embryogenesis abundant (CapLEA-1), H1 and 219 cDNA sequences, Nonspecific LTP precursor (LTP), Cu/Zn superoxide dismutase (Cu/Zn SOD) and protein kinase (PK) in tolerant genotype was significantly more than control (no-salinity seedlings) and S2 genotype (p ≤ 0.05). Transcript accumulation of trehalose 6 phosphate synthase (T6PS) and NADPH: isoflavone oxide reductase (IFR) genes in T1 did not record significant differences with the control or S2 genotype. These results suggested that, faster activation of studied genes in T1 genotype and higher accumulation of transcripts, especially LEA and H1, could be possible reasons for its higher tolerance under salinity stress.
引用
收藏
相关论文
共 50 条
  • [41] Consistent Variation Across Soil Types in Salinity Resistance of a Diverse Range of Chickpea (Cicer arietinum L.) Genotypes
    Krishnamurthy, L.
    Turner, N. C.
    Gaur, P. M.
    Upadhyaya, H. D.
    Varshney, R. K.
    Siddique, K. H. M.
    Vadez, V.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2011, 197 (03) : 214 - 227
  • [42] Alterations in Photochemical and Physiological Activities of Chickpea (Cicer arietinum L.) Cultivars under Drought Stress
    Macar, T. Kalefetoglu
    Ekmekci, Y.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2009, 195 (05) : 335 - 346
  • [43] Symbiotic interactions between chickpea (Cicer arietinum L.) genotypes and Mesorhizobium strains
    A. H. Gunnabo
    J. van Heerwaarden
    R. Geurts
    E. Wolde-meskel
    T. Degefu
    K. E. Giller
    Symbiosis, 2020, 82 : 235 - 248
  • [44] Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage
    Kaur, Gurinder
    Kumar, Sanjeev
    Thakur, Prince
    Malik, Jahid A.
    Bhandhari, Kalpna
    Sharma, K. D.
    Nayyar, Harsh
    SCIENTIA HORTICULTURAE, 2011, 128 (03) : 174 - 181
  • [45] Performance of some winter chickpea (Cicer arietinum L. genotypes in mediterranean conditions
    Derya, Yuecel
    Anlarsal, A. E.
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2008, 36 (02) : 35 - 41
  • [46] The response of some physiological traits of chickpea (Cicer arietinum L.) to biochar and phosphorus fertilizer application
    Macil, Patricia Jozina
    Ogola, John Bob Ochanda
    Odhiambo, Jude Julius Owuor
    Lusiba, Siphiwe Gloria
    LEGUME RESEARCH, 2017, 40 (02) : 299 - 305
  • [47] FLOWERING AND MALE REPRODUCTIVE FUNCTIONS OF CHICKPEA (CICER-ARIETINUM L) GENOTYPES AS AFFECTED BY SALINITY
    DHINGRA, HR
    VARGHESE, TM
    BIOLOGIA PLANTARUM, 1993, 35 (03) : 447 - 452
  • [48] Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase
    Kumar, Sanjeev
    Malik, Jahid
    Thakur, Prince
    Kaistha, Suchi
    Sharma, Kamal Dev
    Upadhyaya, H. D.
    Berger, J. D.
    Nayyar, Harsh
    ACTA PHYSIOLOGIAE PLANTARUM, 2011, 33 (03) : 779 - 787
  • [49] In vitro regeneration and genetic transformation of diverse genotypes of chickpea (Cicer arietinum L.)
    Yadav, Indu Singh
    Singh, N. P.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2011, 71 (04) : 320 - 328
  • [50] Endogenous organic acid variations in different chickpea (Cicer arietinum L.) genotypes
    Toker, C
    Karhan, M
    Ulger, S
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2004, 54 (01): : 42 - 44