Geant4 Monte Carlo simulations for the LPCTrap setup

被引:0
|
作者
D. Rodríguez
G. Ban
D. Durand
F. Duval
X. Fléchard
E. Liénard
F. Mauger
A. Méry
O. Naviliat-Cuncic
J. -C. Thomas
Ph. Velten
机构
[1] Universidad de Huelva,Departamento de Física Aplicada
[2] Université de Caen Basse-Normandie,LPC
[3] CNRS/IN2P3-ENSI,Caen, ENSICAEN
[4] GANIL,Departamento de Física Atómica Molecular y Nuclear
[5] CEA/DSM-CNRS/IN2P3,undefined
[6] Universidad de Granada,undefined
来源
关键词
Radio Frequency; Paul Trap; Geant4 Simulation; Geant4 Monte Carlo Simulation; Spiral Source;
D O I
暂无
中图分类号
学科分类号
摘要
The LPCTrap setup at GANIL is fully operational since 2006. The first breakthrough was the detection of 100000 coincidences between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document} particles and the recoil ions from the decay of 6He+ produced by the SPIRAL source. After preparation, the decaying nuclei are confined in a transparent Paul trap which is surrounded by a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document} -telescope made of a double-sided silicon strip detector followed by a scintillator, and by a micro-channel plate position-sensitive detector to record in coincidence the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document} particles and the recoil ions. Simulations of this system are needed in order to study possible systematic effects and extract with high accuracy the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document} -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \nu$\end{document} angular-correlation coefficient. A code based on Geant4 is well suited for this purpose. In this contribution the results from the simulations compared with those from the experiment will be presented and discussed.
引用
收藏
页码:397 / 400
页数:3
相关论文
共 50 条
  • [31] Geant4 Monte Carlo Simulations of the belt proton radiation environment on board the international space Station/Columbus
    Ersmark, Tore
    Carlson, Per
    Daly, Earnorm
    Fuglesang, Christer
    Gudowska, Irena
    Lund-Jensen, Bengt
    Nierninen, Petteri
    Pearce, Mark
    Santin, Giovanni
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (04) : 1444 - 1453
  • [32] Cancer risk estimation in Digital Breast Tomosynthesis using GEANT4 Monte Carlo simulations and voxel phantoms
    Ferreira, P.
    Baptista, M.
    Di Maria, S.
    Vaz, P.
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (05): : 717 - 723
  • [33] IMRT treatment Monitor Unit verification using absolute calibrated BEAMnrc and Geant4 Monte Carlo simulations
    Oborn, B. M.
    Williams, M.
    Bailey, M.
    Carolan, M. G.
    [J]. XVII INTERNATIONAL CONFERENCE ON THE USE OF COMPUTERS IN RADIATION THERAPY (ICCR 2013), 2014, 489
  • [34] Investigation of Perylene as a Converter Material for Fast Neutron Detection and Spectroscopy Using GEANT4 Monte Carlo Simulations
    Tripathi, Shivang
    Upadhyay, Chandrakant
    Nagaraj, C. P.
    Venkatesan, A.
    Devan, K.
    Madhusoodanan, K.
    [J]. ADVANCES IN SYSTEMS, CONTROL AND AUTOMATION, 2018, 442 : 189 - 197
  • [35] INITIAL SCATTER CHARACTERISATION FOR A 1.5T MRI ACCELERATOR: GEANT4 MONTE CARLO SIMULATIONS AND MEASUREMENTS
    Smit, K.
    Raaijmakers, A.
    Kok, J.
    Raaymakers, B.
    Lagendijk, J.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S43 - S44
  • [36] Geant4 Monte Carlo simulations for sensitivity investigations of an experimental facility for the measurement of tritium surface contaminations by BIXS
    Roellig, Marco
    Bornschein, Beate
    Ebenhoech, Sylvia
    Priester, Florian
    [J]. FUSION ENGINEERING AND DESIGN, 2016, 109 : 684 - 687
  • [37] Polarized electron Mott scattering model for the Geant4 Monte Carlo toolkit
    Dragowski, M.
    Adamus, M.
    Weber, G.
    Wlodarczyk, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2021, 488 : 37 - 42
  • [38] A CUDA Monte Carlo simulator for radiation therapy dosimetry based on Geant4
    Henderson, N.
    Murakami, K.
    Amako, K.
    Asai, M.
    Aso, T.
    Dotti, A.
    Kimura, A.
    Gerritsen, M.
    Kurashige, H.
    Perl, J.
    Sasaki, T.
    [J]. SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,
  • [39] Monte Carlo simulation of the CENBG microbeam and nanobeam lines with the Geant4 toolkit
    Incerti, S.
    Zhang, Q.
    Andersson, F.
    Moretto, Ph.
    Grime, G. W.
    Merchant, M. J.
    Nguyen, D. T.
    Habchi, C.
    Pouthier, T.
    Seznec, H.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 260 (01): : 20 - 27
  • [40] Geant4 Based Monte Carlo Dose Calculation Engine for Radiation Therapy
    Xiao, Shanjie
    Yang, Xue
    Sztejnberg, Manuel
    Jevremovic, Tatjana
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (02) : 775 - 781