A note on the complete convergence for sequences of pairwise NQD random variables

被引:0
|
作者
Haiwu Huang
Dingcheng Wang
Qunying Wu
Qingxia Zhang
机构
[1] University of Electronic Science and Technology of China,School of Mathematics Science
[2] Guilin University of Technology,College of Science
关键词
pairwise NQD random variable sequences; complete convergence; almost sure convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, complete convergence and strong law of large numbers for sequences of pairwise negatively quadrant dependent (NQD) random variables with non-identically distributed are investigated. The results obtained generalize and extend the relevant result of Wu (Acta. Math. Sinica. 45(3), 617-624, 2002) for sequences of pairwise NQD random variables with identically distributed.
引用
收藏
相关论文
共 50 条
  • [1] A note on the complete convergence for sequences of pairwise NQD random variables
    Huang, Haiwu
    Wang, Dingcheng
    Wu, Qunying
    Zhang, Qingxia
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [2] On the Strong Convergence and Complete Convergence for Pairwise NQD Random Variables
    Shen, Aiting
    Zhang, Ying
    Volodin, Andrei
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [3] Complete moment convergence of pairwise NQD random variables
    Yang, Wenzhi
    Hu, Shuhe
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2015, 87 (02) : 199 - 208
  • [4] Almost everywhere convergence for sequences of pairwise NQD random variables
    Yang, Weiguo
    Zhu, Daying
    Gao, Rong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (05) : 2494 - 2505
  • [5] Convergence of weighted sums for sequences of pairwise NQD random variables
    Wu, Yongfeng
    Guo, Mingle
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) : 5977 - 5989
  • [6] Complete Convergence of Generalized Pairwise NQD Sequences
    Wang, Hang
    Tan, Xili
    [J]. MACHINERY ELECTRONICS AND CONTROL ENGINEERING III, 2014, 441 : 742 - 745
  • [7] Strong convergence of pairwise NQD random sequences
    Li, Rui
    Yang, Weiguo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 741 - 747
  • [8] Complete convergence and the strong laws of large numbers for pairwise NQD random variables
    Wu, Yongfeng
    Peng, JiangYan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) : 3864 - 3875
  • [9] Complete convergence of the non-identically distributed pairwise NQD random sequences
    Tan, Xili
    Wang, Hang
    Zhang, Yong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (09) : 2626 - 2637
  • [10] Some Remarks for Sequences of Pairwise NQD Random Variables
    GAN Shixin1
    2.Department of Mathematics
    [J]. Wuhan University Journal of Natural Sciences, 2010, 15 (06) : 467 - 470