Almost everywhere convergence for sequences of pairwise NQD random variables

被引:2
|
作者
Yang, Weiguo [1 ]
Zhu, Daying [1 ]
Gao, Rong [2 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost everywhere convergence; Generalized three-series theorem; Pairwise negatively quadrant dependent (NQD) random variables; DEPENDENT RANDOM-VARIABLES; WEIGHTED SUMS; SURE CONVERGENCE; LIMIT-THEOREMS; ARRAYS; LAW;
D O I
10.1080/03610926.2015.1048883
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we are going to study the almost everywhere convergence for sequences of pairwise negatively quadrant dependent random variables by using truncation technique and Kolmogorov-type generalized three-series theorem. Our results generalize and improve the corresponding results of Wu (2002) and Li and Yang (2008). We also give some examples showing that our extensions are not trivial.
引用
收藏
页码:2494 / 2505
页数:12
相关论文
共 50 条