On the Almost Intersections of Transient Brownian Motions

被引:0
|
作者
Sergio Albeverio
Maria Simonetta Bernabei
Xian Yin Zhou
机构
来源
关键词
intersection; hitting distribution; Wiener sausage; random walk;
D O I
暂无
中图分类号
学科分类号
摘要
Let {B1d(t)} and {Bd2(t)} be independent Brownian motions in Rd starting from 0 and nx respectively, and let wdi(a,b) ={x∈Rd: Bdi(t)=x for some t∈(a,b)}, i=1,2. Asymptotic expressions as n→∞ for the probability of dist(wd1(n2t1, n2t2), w2d(0,n2t3))≤1 with d≥4, respectively for the probability of dist(w14(n2t1,n2t2),w24(0,n2t3))≥1 are obtained. As an application, an improvement of a result due to M. Aizenman concerning the intersections of Wiener sausages in R4 is presented.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 50 条
  • [41] CONCRETE REPRESENTATION OF BROWNIAN MOTIONS
    KAKUTANI, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (11) : 1058 - 1059
  • [42] On squared fractional Brownian motions
    Eisenbaum, N
    Tudor, CA
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 282 - 289
  • [43] The open quantum Brownian motions
    Bauer, Michel
    Bernard, Denis
    Tilloy, Antoine
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [44] ON THE SPECTRUM OF FRACTIONAL BROWNIAN MOTIONS
    FLANDRIN, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 197 - 199
  • [45] Going through the Brownian motions
    Choi, CQ
    SCIENTIFIC AMERICAN, 2005, 293 (06) : 36 - 36
  • [46] Bouncing Skew Brownian Motions
    Arnaud Gloter
    Miguel Martinez
    Journal of Theoretical Probability, 2018, 31 : 319 - 363
  • [47] FINITARY ISOMORPHISMS OF BROWNIAN MOTIONS
    Kosloff, Zemer
    Soo, Terry
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1966 - 1979
  • [48] Quantum Mechanics and Brownian Motions
    Mikio Namiki
    Acta Applicandae Mathematica, 2000, 63 : 275 - 282
  • [49] Almost automorphy, almost periodicity and stability of motions in Banach
    N'guerekata, GM
    FORUM MATHEMATICUM, 2001, 13 (04) : 581 - 588
  • [50] Almost periodic recurrent motions
    Franklin, P
    MATHEMATISCHE ZEITSCHRIFT, 1929, 30 : 325 - 331