Glorious pairs of roots and Abelian ideals of a Borel subalgebra

被引:0
|
作者
Dmitri I. Panyushev
机构
[1] Institute for Information Transmission Problems of the R.A.S,
来源
关键词
Root system; Borel subalgebra; Abelian ideal; Adjacent simple roots; 17B20; 17B22; 06A07; 20F55;
D O I
暂无
中图分类号
学科分类号
摘要
Let g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak {g}}}$$\end{document} be a simple Lie algebra with a Borel subalgebra b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak {b}}}$$\end{document}. Let Δ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^+$$\end{document} be the corresponding (po)set of positive roots and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} the highest root. A pair {η,η′}⊂Δ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\eta ,\eta '\}\subset \Delta ^+$$\end{document} is said to be glorious, if η,η′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ,\eta '$$\end{document} are incomparable and η+η′=θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta +\eta '=\theta $$\end{document}. Using the theory of abelian ideals of b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak {b}}}$$\end{document}, we (1) establish a relationship of η,η′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ,\eta '$$\end{document} to certain abelian ideals associated with long simple roots, (2) provide a natural bijection between the glorious pairs and the pairs of adjacent long simple roots (i.e., some edges of the Dynkin diagram), and (3) point out a simple transform connecting two glorious pairs corresponding to the incident edges in the Dynkin diagram. In types DE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {\mathsf{{{DE}}}}}}_{}$$\end{document}, we prove that if {η,η′}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\eta ,\eta '\}$$\end{document} corresponds to the edge through the branching node of the Dynkin diagram, then the meet η∧η′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \wedge \eta '$$\end{document} is the unique maximal non-commutative root. There is also an analogue of this property for all other types except type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {\mathsf{{{A}}}}}}_{}$$\end{document}. As an application, we describe the minimal non-abelian ideals of b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak {b}}}$$\end{document}.
引用
收藏
页码:505 / 525
页数:20
相关论文
共 50 条
  • [21] Abelian Ideals with Given Dimension in Borel Subalgebras
    Luo, Li
    ALGEBRA COLLOQUIUM, 2012, 19 (04) : 755 - 770
  • [22] THE BRUHAT ORDER ON ABELIAN IDEALS OF BOREL SUBALGEBRAS
    Gandini, Jacopo
    Maffei, Andrea
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 6999 - 7018
  • [23] Abelian ideals and amazing roots
    Panyushev, Dmitri I.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (14)
  • [24] NONLINEAR MAPS ON A BOREL SUBALGEBRA PRESERVING AD-NILPOTENT IDEALS
    Wang, Dengyin
    Zhao, Yanxia
    Chen, Zhengxin
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1519 - 1527
  • [25] Abelian ideals of Borel subalgebras and affine Weyl groups
    Cellini, P
    Papi, P
    ADVANCES IN MATHEMATICS, 2004, 187 (02) : 320 - 361
  • [26] Enumeration of ad-nilpotent ideals of a Borel subalgebra in type A by class of nilpotence
    Orsina, L
    Papi, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 651 - 655
  • [27] Borel ideals
    Marinari, AG
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (01): : 207 - 237
  • [28] FRECHET BOREL IDEALS WITH BOREL ORTHOGONAL
    Guevara, Francisco
    Uzcategui, Carlos
    COLLOQUIUM MATHEMATICUM, 2018, 152 (01) : 141 - 163
  • [29] Principal Borel ideals and Gotzmann ideals
    V. Bonanzinga
    Archiv der Mathematik, 2003, 81 : 385 - 396
  • [30] Principal Borel ideals and Gotzmann ideals
    Bonanzinga, V
    ARCHIV DER MATHEMATIK, 2003, 81 (04) : 385 - 396