Dynamics and control of the modified generalized Korteweg–de Vries–Burgers equation with periodic boundary conditions

被引:0
|
作者
Nejib Smaoui
Rasha Al Jamal
机构
[1] Kuwait University,Department of Mathematics, Faculty of Science
[2] School of Engineering,Department of Mathematics and Physics
来源
Nonlinear Dynamics | 2021年 / 103卷
关键词
Modified generalized Korteweg–de Vries–Burgers equation; Galerkin projection; Karhunen–Loéve decomposition; State feedback control; Distributed control;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the dynamics and control of the modified generalized Korteweg–de Vries–Burgers equation (MGKdVB) with periodic boundary conditions. First, the dynamics of the MGKdVB equation is studied using the Fourier Galerkin and the Karhunen–Loève (K–L) Galerkin methods. The Fourier Galerkin approach is used to generate a system of nine ordinary differential equations (ODEs) from a partial differential equation (PDE), and the K–L Galerkin method is used as a model reduction technique for nonlinear systems to derive a reduced-order system of two ODEs that imitates the dynamics of the MGKdVB equation. It is shown that the two-dimensional reduced-order ODE system based on the K–L Galerkin method is superior to the Fourier Galerkin n-dimensional ODE system for any dimension n<2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<2N+1$$\end{document}, where N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document} is the number of unstable eigenvalues, and it is comparable to the traditional higher nine-dimensional Fourier Galerkin system. Then, in order to enhance the stability of the MGKdVB equation, we propose to use state feedback linearization control schemes for both systems and show that the reduced-order system based on K–L Galerkin method is less expensive to control as compared to the Fourier Galerkin system. Finally, numerical simulations of the controlled systems are shown to illustrate the developed theory.
引用
收藏
页码:987 / 1009
页数:22
相关论文
共 50 条
  • [41] Collision dynamics of fronts in the Korteweg-de Vries-Burgers equation
    Puri, S
    Desai, RC
    Kapral, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 89 (1-2) : 15 - 27
  • [42] On the modified Korteweg de Vries equation
    Hayashi, N
    Naumkin, P
    [J]. INTERNATIONAL SEMINAR DAY ON DIFFRACTION, PROCEEDINGS, 1999, : 146 - 156
  • [43] Periodic Waves in the Fractional Modified Korteweg-de Vries Equation
    Natali, Fabio
    Le, Uyen
    Pelinovsky, Dmitry E.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 1601 - 1640
  • [44] KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .3. DERIVATION OF KORTEWEG-DE VRIES EQUATION AND BURGERS EQUATION
    SU, CH
    GARDNER, CS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (03) : 536 - &
  • [45] Asymptotics of solutions to periodic problem for the Korteweg-de Vries-Burgers equation
    Naumkin, Pavel I.
    Villela-Aguilar, Jose de Jesus
    [J]. STUDIES IN APPLIED MATHEMATICS, 2022, 149 (02) : 523 - 536
  • [46] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7
  • [47] Periodic and rational solutions of modified Korteweg-de Vries equation
    Amdad Chowdury
    Adrian Ankiewicz
    Nail Akhmediev
    [J]. The European Physical Journal D, 2016, 70
  • [48] Boundary control of stochastic Korteweg-de Vries-Burgers equations
    Liang, Shuang
    Wu, Kai-Ning
    [J]. NONLINEAR DYNAMICS, 2022, 108 (04) : 4093 - 4102
  • [49] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356
  • [50] Boundary Stabilization of the Time Fractional Korteweg-de Vries-Burgers Equation
    Li, Ying
    Cheng, Yi
    Li, Cuiying
    [J]. 2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 121 - 124