Fractional Brownian Motion and Sheet as White Noise Functionals

被引:0
|
作者
Zhi Yuan Huang
Chu Jin Li
Jian Ping Wan
Ying Wu
机构
[1] Huazhong University of Science and Technology,Department of Mathematics
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Fractional Brownian motion; Fractional white noise functionals; Fractional Girsanov formula; Wick product; 60H40; 60H05; 60G15; 91B28;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Øksendal follows directly from the classical white noise functional calculus. As examples we prove that the fractional Girsanov formula, the Itô type integrals and the fractional Black–Scholes formula are easy consequences of their classical counterparts. An extension to the fractional Brownian sheet is also briefly discussed.
引用
收藏
页码:1183 / 1188
页数:5
相关论文
共 50 条
  • [21] Nonlinear filtering with fractional Brownian motion noise
    Zhao, X
    Zhao, XQ
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (01) : 55 - 67
  • [22] Path integrals for fractional Brownian motion and fractional Gaussian noise
    Meerson, Baruch
    Benichou, Olivier
    Oshanin, Gleb
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [23] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774
  • [24] Bubble Entropy of Fractional Gaussian Noise and Fractional Brownian Motion
    Manis, George
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [25] ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1567 - 1571
  • [26] Intersection local times of fractional Brownian motions with H ∈ (0,1) as generalized white noise functionals
    Drumond, Custodia
    Oliveira, Maria Joao
    da Silva, Jose Luis
    STOCHASTIC AND QUANTUM DYNAMICS OF BIOMOLECULAR SYSTEMS, 2008, 1021 : 34 - +
  • [27] On limit theorems of some extensions of fractional Brownian motion and their additive functionals
    Ouahra, M. Ait
    Moussaten, S.
    Sghir, A.
    STOCHASTICS AND DYNAMICS, 2017, 17 (03)
  • [28] Limit theorems for a class of integral functionals driven by fractional Brownian motion
    Xia, Xiaoyu
    Yan, Litan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (03) : 583 - 601
  • [29] DISTRIBUTIONS OF QUADRATIC FUNCTIONALS OF THE FRACTIONAL BROWNIAN MOTION BASED ON A MARTINGALE APPROXIMATION
    Tanaka, Katsuto
    ECONOMETRIC THEORY, 2014, 30 (05) : 1078 - 1109
  • [30] A new approach to complex-valued fractional Brownian motion via rotating white noise
    Jumarie, G
    CHAOS SOLITONS & FRACTALS, 1998, 9 (06) : 881 - 893