The Geometry of Projective, Injective, and Flat Banach Modules

被引:0
|
作者
Nemesh N.T. [1 ]
机构
[1] Moscow State University, Moscow
关键词
D O I
10.1007/s10958-019-04170-8
中图分类号
学科分类号
摘要
In this paper, we prove general facts on metrically and topologically projective, injective, and flat Banach modules. We prove theorems pointing to the close connection between metric, topological Banach homology and the geometry of Banach spaces. For example, in geometric terms we give a complete description of projective, injective, and flat annihilator modules. We also show that for an algebra with the geometric structure of an [InlineMediaObject not available: see fulltext.]- or [InlineMediaObject not available: see fulltext.]-space all its homologically trivial modules possess the Dunford–Pettis property. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:445 / 459
页数:14
相关论文
共 50 条
  • [31] INJECTIVE HULLS OF FLAT MODULES
    CHEATHAM, T
    ENOCHS, E
    COMMUNICATIONS IN ALGEBRA, 1980, 8 (20) : 1989 - 1995
  • [32] Direct sums of injective and projective modules
    Guil Asensio, Pedro A.
    Jain, S. K.
    Srivastava, Ashish K.
    JOURNAL OF ALGEBRA, 2010, 324 (06) : 1429 - 1434
  • [33] Almost Projective and Almost Injective Modules
    A. N. Abyzov
    Mathematical Notes, 2018, 103 : 3 - 17
  • [34] STRONG INJECTIVE (PROJECTIVE) DIMENSION OF MODULES
    PAPP, Z
    ARCHIV DER MATHEMATIK, 1974, 25 (04) : 354 - 360
  • [35] FINITENESS CONDITIONS FOR PROJECTIVE AND INJECTIVE MODULES
    FISHER, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (02): : A256 - A256
  • [36] On the flat length of injective modules
    Emmanouil, Ioannis
    Talelli, Olympia
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 408 - 432
  • [37] FINITENESS CONDITIONS FOR PROJECTIVE AND INJECTIVE MODULES
    FISHER, JW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) : 389 - 394
  • [38] Almost Projective and Almost Injective Modules
    Abyzov, A. N.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 3 - 17
  • [39] Ding Projective and Ding Injective Modules
    Yang, Gang
    Liu, Zhongkui
    Liang, Li
    ALGEBRA COLLOQUIUM, 2013, 20 (04) : 601 - 612
  • [40] GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES
    ENOCHS, EE
    JENDA, OMG
    MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) : 611 - 633