Exploiting natural variation for accelerating discoveries in plant specialized metabolism

被引:0
|
作者
Amanda Wager
Xu Li
机构
[1] North Carolina State University,Plants for Human Health Institute
[2] North Carolina State University,Department of Plant and Microbial Biology
来源
Phytochemistry Reviews | 2018年 / 17卷
关键词
Natural variation based discovery; Metabolite-gene association; Biosynthesis and regulation of specialized metabolites; Structure–function relationship; Ecology and evolution;
D O I
暂无
中图分类号
学科分类号
摘要
Plants have the capacity to produce a staggering array of chemically diverse low molecular weight compounds called specialized metabolites. Though they are non-essential for basic cell activities, these molecules are characterized by their role as integral enhancers of plant fitness, and have distinct biological functions including defense against herbivory, immunity, pollinator attraction, molecular signaling, and abiotic stress tolerance. The chemicals are of particular interest because of their pharmacological, industrial, and agricultural usefulness. The inter- or intraspecies variation in the production of specialized metabolites has been widely observed and found to be largely genetically controlled. The natural genetic variation can be used to help identify biosynthetic and regulatory genes, elucidate mechanistic properties of gene function and gene regulation, and explore evolutionary and ecological questions. Recent advances in sequencing and data mining technologies have facilitated the integration of population genetics tools such as quantitative trait loci (QTL) mapping and genome wide association (GWA) with metabolite and/or gene expression profiling to exploit the natural variation for making new discoveries in the model plant Arabidopsis thaliana, as well as in more agriculturally relevant species. Here we highlight key discoveries that were catalyzed by taking advantage of naturally occurring variation, and comment on technologies and resources employed by this approach, in hopes of providing phytochemists an archetype for harnessing the power of natural variation to accelerate discoveries in plant specialized metabolism.
引用
收藏
页码:17 / 36
页数:19
相关论文
共 50 条
  • [21] Exploiting plant metabolism for the phytoremediation of persistent herbicides
    Julian O. D. Coleman
    Carla Frova
    Peter Schröder
    Michel Tissut
    Environmental Science and Pollution Research, 2002, 9 : 18 - 28
  • [22] Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism
    Sorensen, Mette
    Neilson, Elizabeth H. J.
    Moller, Birger Lindberg
    MOLECULAR PLANT, 2018, 11 (01) : 95 - 117
  • [23] Evolution-aided engineering of plant specialized metabolism
    Mohammad Irfan
    Benjamin Chavez
    Paride Rizzo
    John C. D’Auria
    Gaurav D. Moghe
    aBIOTECH, 2021, 2 : 240 - 263
  • [24] Reprogramming plant specialized metabolism by manipulating protein kinases
    Lyu, Ruiqing
    Singh, Sanjay K.
    Liu, Yongliang
    Patra, Barunava
    Zhou, Yan
    Wang, Bingwu
    Pattanaik, Sitakanta
    Yuan, Ling
    ABIOTECH, 2021, 2 (03) : 226 - 239
  • [25] Glucose ester enabled acylation in plant specialized metabolism
    Alexander E. Wilson
    Hosea D. Matel
    Li Tian
    Phytochemistry Reviews, 2016, 15 : 1057 - 1074
  • [26] Plant specialized metabolism: Diversity of terpene synthases and their products
    Bergman, Matthew E.
    Dudareva, Natalia
    CURRENT OPINION IN PLANT BIOLOGY, 2024, 81
  • [27] Glucose ester enabled acylation in plant specialized metabolism
    Wilson, Alexander E.
    Matel, Hosea D.
    Tian, Li
    PHYTOCHEMISTRY REVIEWS, 2016, 15 (06) : 1057 - 1074
  • [28] Pairing omics to decode the diversity of plant specialized metabolism
    Wolters, Felicia C.
    Del Pup, Elena
    Singh, Kumar Saurabh
    Bouwmeester, Klaas
    Schranz, M. Eric
    van der Hooft, Justin J. J.
    Medema, Marnix H.
    CURRENT OPINION IN PLANT BIOLOGY, 2024, 82
  • [29] Evolution-aided engineering of plant specialized metabolism
    Irfan, Mohammad
    Chavez, Benjamin
    Rizzo, Paride
    D'Auria, John C.
    Moghe, Gaurav D.
    ABIOTECH, 2021, 2 (03) : 240 - 263
  • [30] Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism
    Leong, Bryan J.
    Last, Robert L.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 47 : 105 - 112