In this paper, we investigate an eigenvalue problem of Dirichlet Laplacian on a bounded domain Ω in an n-dimensional Euclidean space Rn. If λk+1 is the (k + 1)th eigenvalue of Dirichlet Laplacian on Ω, then, we prove that, for n ≥ 41 and
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\geq 41, \lambda_{k+1}\leq k^{\frac2n}\lambda_1$$\end{document} and, for any n and
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k, \lambda_{k+1}\leq C_{0}(n,k) k^{\frac2n}\lambda_1$$\end{document} with
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_0(n,k)\leq {j^{2}_{n/2,1}}/{j^{2}_{n/2-1,1}}$$\end{document}, where jp,k denotes the k-th positive zero of the standard Bessel function Jp(x) of the first kind of order p. From the asymptotic formula of Weyl and the partial solution of the conjecture of Pólya, we know that our estimates are optimal in the sense of order of k.