Bounds on eigenvalues of Dirichlet Laplacian

被引:0
|
作者
Qing-Ming Cheng
Hongcang Yang
机构
[1] Saga University,Department of Mathematics, Faculty of Science and Engineering
[2] International Centre for Theoretical Physics,Department of Mathematics
[3] University of California,Academy of Mathematics and Systematical Sciences
[4] CAS,undefined
来源
Mathematische Annalen | 2007年 / 337卷
关键词
35P15; 58G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate an eigenvalue problem of Dirichlet Laplacian on a bounded domain Ω in an n-dimensional Euclidean space Rn. If λk+1 is the (k + 1)th eigenvalue of Dirichlet Laplacian on Ω, then, we prove that, for n ≥  41 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geq 41, \lambda_{k+1}\leq k^{\frac2n}\lambda_1$$\end{document} and, for any n and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k, \lambda_{k+1}\leq C_{0}(n,k) k^{\frac2n}\lambda_1$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0(n,k)\leq {j^{2}_{n/2,1}}/{j^{2}_{n/2-1,1}}$$\end{document}, where jp,k denotes the k-th positive zero of the standard Bessel function Jp(x) of the first kind of order p. From the asymptotic formula of Weyl and the partial solution of the conjecture of Pólya, we know that our estimates are optimal in the sense of order of k.
引用
收藏
页码:159 / 175
页数:16
相关论文
共 50 条
  • [1] Bounds on eigenvalues of Dirichlet Laplacian
    Cheng, Qing-Ming
    Yang, Hongcang
    MATHEMATISCHE ANNALEN, 2007, 337 (01) : 159 - 175
  • [2] BOUNDS FOR RATIOS OF EIGENVALUES OF THE DIRICHLET LAPLACIAN
    ASHBAUGH, MS
    BENGURIA, RD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (01) : 145 - 150
  • [3] Bounds for eigenvalues of the Dirichlet problem for the logarithmic Laplacian
    Chen, Huyuan
    Veron, Laurent
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (03) : 541 - 558
  • [4] ESTIMATES THE UPPER BOUNDS OF DIRICHLET EIGENVALUES FOR FRACTIONAL LAPLACIAN
    Chen, Hua
    Chen, Hong-ge
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (01) : 301 - 317
  • [5] Multidimensional lower bounds for the eigenvalues of Stokes and Dirichlet Laplacian operators
    Yolcu, Selma Yildirim
    Yolcu, Tuerkay
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
  • [6] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [7] BOUNDS FOR THE EIGENVALUES OF THE FRACTIONAL LAPLACIAN
    Yolcu, Selma Yildirim
    Yolcu, Tuerkay
    REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (03)
  • [8] Lower order eigenvalues of Dirichlet Laplacian
    Sun, Hejun
    Cheng, Qing-Ming
    Yang, Hongcang
    MANUSCRIPTA MATHEMATICA, 2008, 125 (02) : 139 - 156
  • [9] Hadamard asymptotics for eigenvalues of the Dirichlet Laplacian
    Kozlov, Vladimir
    Thim, Johan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 140 : 67 - 88
  • [10] Lower order eigenvalues of Dirichlet Laplacian
    Hejun Sun
    Qing-Ming Cheng
    Hongcang Yang
    manuscripta mathematica, 2008, 125 : 139 - 156