BOUNDS FOR THE EIGENVALUES OF THE FRACTIONAL LAPLACIAN

被引:6
|
作者
Yolcu, Selma Yildirim [1 ]
Yolcu, Tuerkay [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Eigenvalue; fractional Laplacian; Polya's inequality; transform; DOMAINS; DIRICHLET; OPERATORS;
D O I
10.1142/S0129055X12500031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we extend Polya's legendary inequality for the Dirichlet Laplacian to the fractional Laplacian. Polya's argument is revealed to be a powerful tool for proving such extensions on tiling domains. As in the Dirichlet Laplacian case, Polya's inequality for the fractional Laplacian on any bounded domain is still an open problem. Moreover, we also investigate the equivalence of several related inequalites for bounded domains by using the convexity, the Lieb-Aizenman procedure (the Riesz iteration), and some transforms such as the Laplace transform, the Legendre transform, and the Weyl fractional transform.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Lower bounds for fractional Laplacian eigenvalues
    Wei, Guoxin
    Sun, He-Jun
    Zeng, Lingzhong
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [2] ESTIMATES THE UPPER BOUNDS OF DIRICHLET EIGENVALUES FOR FRACTIONAL LAPLACIAN
    Chen, Hua
    Chen, Hong-ge
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (01): : 301 - 317
  • [3] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [4] Bounds on eigenvalues of Dirichlet Laplacian
    Qing-Ming Cheng
    Hongcang Yang
    [J]. Mathematische Annalen, 2007, 337 : 159 - 175
  • [5] Bounds on eigenvalues of Dirichlet Laplacian
    Cheng, Qing-Ming
    Yang, Hongcang
    [J]. MATHEMATISCHE ANNALEN, 2007, 337 (01) : 159 - 175
  • [6] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    [J]. Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [7] Lower bounds of the Laplacian graph eigenvalues
    Torgasev, A
    Petrovic, M
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 589 - 593
  • [8] Bounds on normalized Laplacian eigenvalues of graphs
    Jianxi Li
    Ji-Ming Guo
    Wai Chee Shiu
    [J]. Journal of Inequalities and Applications, 2014
  • [9] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [10] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng Li
    Yong Liang Pan
    [J]. Acta Mathematica Sinica, 2004, 20 : 803 - 806