On the Combinatorics of Rooted Binary Phylogenetic Trees

被引:0
|
作者
Yun S. Song
机构
[1] University of Oxford,Department of Statistics
关键词
rooted trees; ordered trees; subtree prune regraft; neighbourhood;
D O I
10.1007/s00026-003-0192-0
中图分类号
学科分类号
摘要
We study subtree-prune-and-regraft (SPR) operations on leaf-labelled rooted binary trees, also known as rooted binary phylogenetic trees. This study is motivated by the problem of graphically representing evolutionary histories of biological sequences subject to recombination. We investigate some basic properties of the induced SPR-metric on the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document} of leaf-labelled rooted binary trees with n leaves. In contrast to the case of unrooted trees, the number |U(T)| of trees in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document} which are one SPR operation away from a given tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ T \in \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document} depends on the topology of T. In this paper, we construct recursion relations which allow one to determine the unit-neighbourhood size |U(T)| efficiently for any tree topology. In fact, using the recursion relations we are able to derive a simple closed-form formula for the unit-neighbourhood size. As a corollary, we construct sharp upper and lower bounds on the size of unit-neighbourhoods and investigate the diameter of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document}. Lastly, we consider an enumeration problem relevant to population genetics.
引用
收藏
页码:365 / 379
页数:14
相关论文
共 50 条
  • [31] A partial order and cluster-similarity metric on rooted phylogenetic trees
    Michael Hendriksen
    Andrew Francis
    [J]. Journal of Mathematical Biology, 2020, 80 : 1265 - 1290
  • [32] Exchangeable and sampling-consistent distributions on rooted binary trees
    Hollering, Benjamin
    Sullivant, Seth
    [J]. JOURNAL OF APPLIED PROBABILITY, 2022, 59 (01) : 60 - 80
  • [33] A partial order and cluster-similarity metric on rooted phylogenetic trees
    Hendriksen, Michael
    Francis, Andrew
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (05) : 1265 - 1290
  • [34] Counting Embeddings of Rooted Trees into Families of Rooted Trees
    Gittenberger, Bernhard
    Golebiewski, Zbigniew
    Larcher, Isabella
    Sulkowska, Malgorzata
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [35] Defining Binary Phylogenetic Trees Using Parsimony
    Fischer, Mareike
    [J]. ANNALS OF COMBINATORICS, 2022, 27 (3) : 457 - 467
  • [36] Defining Binary Phylogenetic Trees Using Parsimony
    Mareike Fischer
    [J]. Annals of Combinatorics, 2023, 27 : 457 - 467
  • [37] On geometry of binary symmetric models of phylogenetic trees
    Buczynska, Weronika
    Wisniewski, Jaroslaw A.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (03) : 609 - 635
  • [38] The mean value of the squared path-difference distance for rooted phylogenetic trees
    Mir, Arnau
    Russello, Francesc
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 168 - 176
  • [39] On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees
    Rosenberg, Noah A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 291 : 88 - 98
  • [40] Leaping through Tree Space: Continuous Phylogenetic Inference for Rooted and Unrooted Trees
    Penn, Matthew J.
    Scheidwasser, Neil
    Penn, Joseph
    Donnelly, Christl A.
    Duchene, David A.
    Bhatt, Samir
    [J]. GENOME BIOLOGY AND EVOLUTION, 2023, 15 (12):