On the Combinatorics of Rooted Binary Phylogenetic Trees

被引:0
|
作者
Yun S. Song
机构
[1] University of Oxford,Department of Statistics
关键词
rooted trees; ordered trees; subtree prune regraft; neighbourhood;
D O I
10.1007/s00026-003-0192-0
中图分类号
学科分类号
摘要
We study subtree-prune-and-regraft (SPR) operations on leaf-labelled rooted binary trees, also known as rooted binary phylogenetic trees. This study is motivated by the problem of graphically representing evolutionary histories of biological sequences subject to recombination. We investigate some basic properties of the induced SPR-metric on the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document} of leaf-labelled rooted binary trees with n leaves. In contrast to the case of unrooted trees, the number |U(T)| of trees in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document} which are one SPR operation away from a given tree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ T \in \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document} depends on the topology of T. In this paper, we construct recursion relations which allow one to determine the unit-neighbourhood size |U(T)| efficiently for any tree topology. In fact, using the recursion relations we are able to derive a simple closed-form formula for the unit-neighbourhood size. As a corollary, we construct sharp upper and lower bounds on the size of unit-neighbourhoods and investigate the diameter of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{T}_{n}^{\mathrm{r}} $$ \end{document}. Lastly, we consider an enumeration problem relevant to population genetics.
引用
收藏
页码:365 / 379
页数:14
相关论文
共 50 条
  • [1] Combinatorics of rooted trees and Hopf algebras
    Hoffman, ME
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) : 3795 - 3811
  • [2] BIMLR: A method for constructing rooted phylogenetic networks from rooted phylogenetic trees
    Wang, Juan
    Guo, Maozu
    Xing, Linlin
    Che, Kai
    Liu, Xiaoyan
    Wang, Chunyu
    [J]. GENE, 2013, 527 (01) : 344 - 351
  • [3] Nodal distances for rooted phylogenetic trees
    Gabriel Cardona
    Mercè Llabrés
    Francesc Rosselló
    Gabriel Valiente
    [J]. Journal of Mathematical Biology, 2010, 61 : 253 - 276
  • [4] A Metric on the Space of Rooted Phylogenetic Trees
    Wang, Juan
    Guo, Maozu
    [J]. CURRENT BIOINFORMATICS, 2018, 13 (05) : 487 - 491
  • [5] Tanglegrams for rooted phylogenetic trees and networks
    Scornavacca, Celine
    Zickmann, Franziska
    Huson, Daniel H.
    [J]. BIOINFORMATICS, 2011, 27 (13) : I248 - I256
  • [6] Lassoing and Corralling Rooted Phylogenetic Trees
    Huber, Katharina T.
    Popescu, Andrei-Alin
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (03) : 444 - 465
  • [7] Nodal distances for rooted phylogenetic trees
    Cardona, Gabriel
    Llabres, Merce
    Rossello, Francesc
    Valiente, Gabriel
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (02) : 253 - 276
  • [8] Lassoing and Corralling Rooted Phylogenetic Trees
    Katharina T. Huber
    Andrei-Alin Popescu
    [J]. Bulletin of Mathematical Biology, 2013, 75 : 444 - 465
  • [9] Improved approximation algorithm for maximum agreement forest of two rooted binary phylogenetic trees
    Shi, Feng
    Feng, Qilong
    You, Jie
    Wang, Jianxin
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 111 - 143
  • [10] Improved approximation algorithm for maximum agreement forest of two rooted binary phylogenetic trees
    Feng Shi
    Qilong Feng
    Jie You
    Jianxin Wang
    [J]. Journal of Combinatorial Optimization, 2016, 32 : 111 - 143