Analytic Semigroup Approach to Generalized Navier–Stokes Flows in Besov Spaces

被引:1
|
作者
Zhi-Min Chen
机构
[1] University of Southampton,Ship Science
[2] Shenzhen University,School of Mathematics and Statistics
关键词
Generalized Navier–Stokes equations; well-posedness; analytic semigroup; Besov spaces; 35B32; 35B35; 35Q35; 86A10;
D O I
暂无
中图分类号
学科分类号
摘要
The energy dissipation of the Navier–Stokes equations is controlled by the viscous force defined by the Laplacian -Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta $$\end{document}, while that of the generalized Navier–Stokes equations is determined by the fractional Laplacian (-Δ)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^\alpha $$\end{document}. The existence and uniqueness problem is always solvable in a strong dissipation situation in the sense of large α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} but it becomes complicated when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is decreasing. In this paper, the well-posedness regarding to the unique existence of small time solutions and small initial data solutions is examined in critical homogeneous Besov spaces for α≥1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 1/2$$\end{document}. An analytic semigroup approach to the understanding of the generalized Navier–Stokes equations is developed and thus the well-posedness on the equations is examined in a manner different to earlier investigations.
引用
收藏
页码:709 / 724
页数:15
相关论文
共 50 条