Resonance oscillations in a mass-spring impact oscillator

被引:0
|
作者
J. Newman
O. Makarenkov
机构
[1] Imperial College London,Department of Mathematics
[2] University of Texas at Dallas,Department of Mathematical Sciences
来源
Nonlinear Dynamics | 2015年 / 79卷
关键词
Asymptotic stability; Periodic solutions; Impact oscillator; Averaging method; Perturbation approach;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the presence of asymptotically stable periodic oscillations in a time-periodic impact oscillator close to an isochronous one. A new averaging method is developed to account for the position of the obstacle and for the impact restitution coefficient, which do not appear in the classical smooth situation.
引用
收藏
页码:111 / 118
页数:7
相关论文
共 50 条
  • [31] LYAPUNOV-BASED CONTROL OF A ROBOT AND MASS-SPRING SYSTEM UNDERGOING AN IMPACT COLLISION
    Dupree, K.
    Liang, C. -H.
    Hu, G.
    Dixon, W. E.
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2009, 24 (04): : 302 - 311
  • [32] Lyapunov-based control of a robot and mass-spring system undergoing an impact collision
    Dupree, K.
    Dixon, W. E.
    Hu, G.
    Liang, C.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3241 - 3246
  • [33] Scalable distributed Kalman Filtering for mass-spring systems
    Henningsson, Tbivo
    Rantzer, Anders
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 4427 - 4432
  • [34] Dripping faucet dynamics by an improved mass-spring model
    Kiyono, K
    Fuchikami, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (10) : 3259 - 3270
  • [35] NONLINEAR RESPONSE OF THE MASS-SPRING MODEL WITH NONSMOOTH STIFFNESS
    Litak, Grzegorz
    Seoane, Jesus M.
    Zambrano, Samuel
    Sanjuan, Miguel A. F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (01):
  • [36] Flattening triangulated surfaces using a mass-spring model
    Li, JT
    Zhang, DL
    Lu, GD
    Peng, YY
    Wen, X
    Sakaguti, Y
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 25 (1-2): : 108 - 117
  • [37] Fractal classifications of trajectories in a nonlinear mass-spring system
    McDonald, John
    COMPUTERS & GRAPHICS-UK, 2006, 30 (05): : 815 - 833
  • [38] A new updating method for the damped mass-spring systems
    Zhao, Kang
    Cheng, Lizhi
    Li, Shengguo
    Liao, Anping
    APPLIED MATHEMATICAL MODELLING, 2018, 62 : 119 - 133
  • [39] Vibration of Heavy String Tethered to Mass-Spring System
    Wang, C. Y.
    Wang, C. M.
    Freund, R.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2017, 17 (04)
  • [40] Mass-Spring Model of a Self-Pulsating Drop
    Antoine, Charles
    Pimienta, Veronique
    LANGMUIR, 2013, 29 (48) : 14935 - 14946