Estimation methods for the LRD parameter under a change in the mean

被引:0
|
作者
Aeneas Rooch
Ieva Zelo
Roland Fried
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik
[2] Technische Universität Dortmund,Fakultät für Statistik
来源
Statistical Papers | 2019年 / 60卷
关键词
Hurst parameter; Estimation; Jump; Long-range dependence; Long memory; Change-point problems; 62M10;
D O I
暂无
中图分类号
学科分类号
摘要
When analyzing time series which are supposed to exhibit long-range dependence (LRD), a basic issue is the estimation of the LRD parameter, for example the Hurst parameter H∈(1/2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \in (1/2, 1)$$\end{document}. Conventional estimators of H easily lead to spurious detection of long memory if the time series includes a shift in the mean. This defect has fatal consequences in change-point problems: Tests for a level shift rely on H, which needs to be estimated before, but this estimation is distorted by the level shift. We investigate two blocks approaches to adapt estimators of H to the case that the time series includes a jump and compare them with other natural techniques as well as with estimators based on the trimming idea via simulations. These techniques improve the estimation of H if there is indeed a change in the mean. In the absence of such a change, the methods little affect the usual estimation. As adaption, we recommend an overlapping blocks approach: If one uses a consistent estimator, the adaption will preserve this property and it performs well in simulations.
引用
收藏
页码:313 / 347
页数:34
相关论文
共 50 条
  • [31] ON LINEAR-ESTIMATION OF A SINGLE PARAMETER OF A MEAN FUNCTION UNDER 2ND ORDER DISTURBANCE
    YLVISAKER, ND
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02): : 539 - 539
  • [32] Parameter estimation methods for 3-parameter Weibull distribution
    Zhao, Bingfeng
    Wu, Sujun
    [J]. ENGINEERING STRUCTURAL INTEGRITY: RESEARCH, DEVELOPMENT AND APPLICATION, VOLS 1 AND 2, 2007, : 1170 - 1173
  • [33] Monitoring mean change via penalized estimation
    Na, Okyoung
    Kwon, Sunghoon
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1429 - 1444
  • [34] Parameter estimation under genomic selection
    Misztal, Ignacy
    [J]. JOURNAL OF ANIMAL SCIENCE, 2020, 98 : 31 - 31
  • [35] Parameter estimation under orthant restrictions
    Fernández, MA
    Rueda, C
    Salvador, B
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (01): : 171 - 181
  • [36] Methods for improvement in estimation of a normal mean matrix
    Tsukuma, Hisayuki
    Kubokawa, Tatsuya
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1592 - 1610
  • [37] Ratio methods to the mean estimation with known quantiles
    Rueda, M
    Arcos, A
    González-Aguilera, S
    Martínez-Miranda, MD
    Román, Y
    Martínez-Puertas, S
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (02) : 1031 - 1044
  • [38] Estimation After Parameter Selection: Performance Analysis and Estimation Methods
    Routtenberg, Tirza
    Tong, Lang
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (20) : 5268 - 5281
  • [39] Change Point Detection by Sparse Parameter Estimation
    Neubauer, Jiri
    Vesely, Vitezslav
    [J]. INFORMATICA, 2011, 22 (01) : 149 - 164
  • [40] Analysis of LRD Series with Time-Varying Hurst Parameter
    Ledesma Orozco, Sergio
    Cerda Villafana, Gustavo
    Avina Cervantes, Gabriel
    Hernandez Fusilier, Donato
    Torres Cisneros, Miguel
    [J]. COMPUTACION Y SISTEMAS, 2010, 13 (03): : 295 - 312