A minimal contrast estimator for the linear fractional stable motion

被引:0
|
作者
Mathias Mørck Ljungdahl
Mark Podolskij
机构
[1] Aarhus University,Department of Mathematics
关键词
Linear fractional processes; Lévy processes; Limit theorems; Parametric estimation; Bootstrap; Subsampling; Self-similarity; Low frequency; Primary 60G22; 62F12; 62E20; Secondary 60E07; 60F05; 60G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an estimator for the three-dimensional parameter (σ,α,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma , \alpha , H)$$\end{document} of the linear fractional stable motion, where H represents the self-similarity parameter, and (σ,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma , \alpha )$$\end{document} are the scaling and stability parameters of the driving symmetric Lévy process L. Our approach is based upon a minimal contrast method associated with the empirical characteristic function combined with a ratio type estimator for the self-similarity parameter H. The main result investigates the strong consistency and weak limit theorems for the resulting estimator. Furthermore, we propose several ideas to obtain feasible confidence regions in various parameter settings. Our work is mainly related to Ljungdahl and Podolskij (A note on parametric estimation of Lévy moving average processes, p 294, 2019) and Mazur et al. (Bernoulli 26(1): 226–252, 2020) in which parameter estimation for the linear fractional stable motion and related Lévy moving average processes has been studied.
引用
收藏
页码:381 / 413
页数:32
相关论文
共 50 条
  • [21] Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform
    Stoev, S
    Taqqu, MS
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2004, 12 (01) : 95 - 121
  • [22] Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts
    Watkins, N. W.
    Credgington, D.
    Sanchez, R.
    Rosenberg, S. J.
    Chapman, S. C.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [23] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    WeiLin Xiao
    WeiGuo Zhang
    XiLi Zhang
    Science China Mathematics, 2012, 55 : 1497 - 1511
  • [24] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    XIAO WeiLin1
    2Department of Accounting and Finance
    Science China(Mathematics), 2012, 55 (07) : 1497 - 1511
  • [25] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    Xiao WeiLin
    Zhang WeiGuo
    Zhang XiLi
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1497 - 1511
  • [26] A novel Mittag–Leffler stable estimator for nonlinear fractional-order systems: a linear quadratic regulator approach
    Oscar Martínez-Fuentes
    Rafael Martínez-Guerra
    Nonlinear Dynamics, 2018, 94 : 1973 - 1986
  • [27] A model for motion perception depending on the minimal contrast
    Bayer, F.
    Hansen, T.
    Gegenfurtner, K. R.
    PERCEPTION, 2009, 38 : 86 - 86
  • [28] A Fractional Linear System View of the Fractional Brownian Motion
    Manuel Duarte Ortigueira
    Arnaldo Guimarães Batista
    Nonlinear Dynamics, 2004, 38 : 295 - 303
  • [29] Design of a linear motion estimator based on the properties of human motion perception
    Chen, YS
    Choa, IS
    VISUALIZATION AND OPTIMIZATION TECHNIQUES, 2001, 4553 : 354 - 358
  • [30] A fractional linear system view of the fractional Brownian motion
    Ortigueira, MD
    Batista, AG
    NONLINEAR DYNAMICS, 2004, 38 (1-4) : 295 - 303