A minimal contrast estimator for the linear fractional stable motion

被引:0
|
作者
Mathias Mørck Ljungdahl
Mark Podolskij
机构
[1] Aarhus University,Department of Mathematics
关键词
Linear fractional processes; Lévy processes; Limit theorems; Parametric estimation; Bootstrap; Subsampling; Self-similarity; Low frequency; Primary 60G22; 62F12; 62E20; Secondary 60E07; 60F05; 60G10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an estimator for the three-dimensional parameter (σ,α,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma , \alpha , H)$$\end{document} of the linear fractional stable motion, where H represents the self-similarity parameter, and (σ,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma , \alpha )$$\end{document} are the scaling and stability parameters of the driving symmetric Lévy process L. Our approach is based upon a minimal contrast method associated with the empirical characteristic function combined with a ratio type estimator for the self-similarity parameter H. The main result investigates the strong consistency and weak limit theorems for the resulting estimator. Furthermore, we propose several ideas to obtain feasible confidence regions in various parameter settings. Our work is mainly related to Ljungdahl and Podolskij (A note on parametric estimation of Lévy moving average processes, p 294, 2019) and Mazur et al. (Bernoulli 26(1): 226–252, 2020) in which parameter estimation for the linear fractional stable motion and related Lévy moving average processes has been studied.
引用
收藏
页码:381 / 413
页数:32
相关论文
共 50 条
  • [1] A minimal contrast estimator for the linear fractional stable motion
    Ljungdahl, Mathias Morck
    Podolskij, Mark
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 381 - 413
  • [2] Linear fractional stable motion: A wavelet estimator of the α parameter
    Ayache, Antoine
    Hamonier, Julien
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) : 1569 - 1575
  • [3] Estimation of the linear fractional stable motion
    Mazur, Stepan
    Otryakhin, Dmitry
    Podolskij, Mark
    BERNOULLI, 2020, 26 (01) : 226 - 252
  • [4] On the Fourier coefficients of linear fractional stable motion
    Martynas Manstavičius
    Lithuanian Mathematical Journal, 2011, 51 : 402 - 416
  • [5] ON THE FOURIER COEFFICIENTS OF LINEAR FRACTIONAL STABLE MOTION
    Manstavicius, Martynas
    LITHUANIAN MATHEMATICAL JOURNAL, 2011, 51 (03) : 402 - 416
  • [6] Fourier series approximation of linear fractional stable motion
    Bierme, Hermine
    Scheffler, Hans-Peter
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (02) : 180 - 202
  • [7] Fourier Series Approximation of Linear Fractional Stable Motion
    Hermine Biermé
    Hans-Peter Scheffler
    Journal of Fourier Analysis and Applications, 2008, 14 : 180 - 202
  • [8] Simulating sample paths of linear fractional stable motion
    Wu, WB
    Michailidis, G
    Zhang, DL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) : 1086 - 1096
  • [9] Linear Fractional Stable Motion with the rlfsm R Package
    Mazur, Stepan
    Otryakhin, Dmitry
    R JOURNAL, 2020, 12 (01): : 386 - 405
  • [10] Linear estimator for fractional systems
    Danial Mohammadi Senejohnny
    Hadi Delavari
    Signal, Image and Video Processing, 2014, 8 : 389 - 396