An elliptic Lindstedt--Poincaré (L--P) method is presented for the steady-state analysis of strongly non-linear oscillators of the form\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\ddot x + c_1 x + c_3 x^3 = \varepsilon f(x,\dot x)$$
\end{document} , in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L--P perturbation procedure. This method can be viewed as a generalization of the L--P method. As an application of this method, three types of the generalized Van der Pol equation with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$f(x,\dot x) = (c_0 - c_2 x^2 )\dot x$$
\end{document} are studied in detail.
机构:
Jilin Univ, Sch Math, Dept Engn Sci & Mech, Changchun 130012, Peoples R ChinaJilin Univ, Sch Math, Dept Engn Sci & Mech, Changchun 130012, Peoples R China
Sun, W. P.
Wu, B. S.
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Dept Engn Sci & Mech, Changchun 130012, Peoples R ChinaJilin Univ, Sch Math, Dept Engn Sci & Mech, Changchun 130012, Peoples R China
Wu, B. S.
Lim, C. W.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R ChinaJilin Univ, Sch Math, Dept Engn Sci & Mech, Changchun 130012, Peoples R China
Lim, C. W.
[J].
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS,
2007,
2
(02):
: 141
-
145