An Elliptic Lindstedt--Poincaré Method for Certain Strongly Non-Linear Oscillators

被引:0
|
作者
S. H. Chen
Y. K. Cheung
机构
来源
Nonlinear Dynamics | 1997年 / 12卷
关键词
Elliptic functions; L--P method; strongly non-linear oscillators;
D O I
暂无
中图分类号
学科分类号
摘要
An elliptic Lindstedt--Poincaré (L--P) method is presented for the steady-state analysis of strongly non-linear oscillators of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\ddot x + c_1 x + c_3 x^3 = \varepsilon f(x,\dot x)$$ \end{document} , in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L--P perturbation procedure. This method can be viewed as a generalization of the L--P method. As an application of this method, three types of the generalized Van der Pol equation with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f(x,\dot x) = (c_0 - c_2 x^2 )\dot x$$ \end{document} are studied in detail.
引用
收藏
页码:199 / 213
页数:14
相关论文
共 50 条