prey-predator model;
positive solutions;
bifurcation;
existence and uniqueness;
stability;
35J55;
35B25;
92B05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In the paper, we study the positive solutions of an elliptic system coming from a preypredator model with modified Leslie-Gower and Holling-Type II schemes. We study the existence, non-existence, bifurcation, uniqueness and stability of positive solutions. In particular, we obtain a continuum of positive solutions connecting a semi-trivial solution to the unique positive solution of the limiting system.
机构:
Shenzhen Inst Informat Technol, Dept Publ Courses, Shenzhen 518172, Peoples R ChinaShenzhen Inst Informat Technol, Dept Publ Courses, Shenzhen 518172, Peoples R China
Jiang, Yu
Wei, Hui-ming
论文数: 0引用数: 0
h-index: 0
机构:
China Nucl Power Simulat Technol Co Ltd, Shenzhen 518031, Peoples R ChinaShenzhen Inst Informat Technol, Dept Publ Courses, Shenzhen 518172, Peoples R China
Wei, Hui-ming
INTERNATIONAL CONFERENCE ON MATHEMATICS, MODELLING AND SIMULATION TECHNOLOGIES AND APPLICATIONS (MMSTA 2017),
2017,
215
: 24
-
31
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Baoshan Coll, Dept Math, Baoshan 678000, Yunnan, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Li, Chenglin
Zhang, Guohong
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China