Synthesis of carbon fibre-reinforced, silicon carbide composites by soft-solution approach

被引:0
|
作者
N PADMAVATHI
P GHOSAL
N ESWARA PRASAD
J SUBRAMANYAM
K K RAY
机构
[1] Defence Metallurgical Research Laboratory (DMRL),Department of Metallurgical and Materials Engineering
[2] DRDO,undefined
[3] PO Kanchanbagh,undefined
[4] Regional Centre for Military Airworthiness (Materials),undefined
[5] CEMILAC,undefined
[6] DRDO,undefined
[7] PO Kanchanbagh,undefined
[8] Indian Institute of Technology,undefined
来源
Sadhana | 2012年 / 37卷
关键词
Carbon fibre, silicon carbide composites; soft-solution approach; carbothermal reduction; tensile strength; interfaces;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present work centers on synthesizing and characterizing carbon fibre (Cf) reinforced, silicon carbide matrix composites which are considered to have potential applications in aerospace and automobile industry. A series of composites, namely the Cf-SiC, Cf-(SiC+ZrC), Cf-(SiC+ZrB2), and Cf-(SiC+ZrO2), have been prepared by a proposed soft-solution approach. This approach involves the use of water-soluble precursors of colloidal silica, sucrose, zirconium oxychloride, and boric acid as sources of silica, carbon, zirconia, and boron oxide, respectively to achieve the desired matrices through drying, carbonization and carbothermal reduction. The prepared powders and the composites were characterized by thermal analysis, X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses to assess the phase formation and microstructure of the materials, apart from assessment of their tensile properties. The study shows that the soft-solution process yields matrices with finer crystallite sizes, having homogeneous distribution of the constituent phases of either the powders or of the composite matrices. The role of the additional phases on the tensile properties of the composites has been discussed using consideration of thermal stresses at fibre-matrix interface; whereas the role of the carbothermal reduction temperature in determining these properties has been explained using the interfacial characteristics of the fibre-matrix. Addition of ZrO2 in the matrix of SiC has shown to improve the properties of Cf-SiC composites considerably. The results of this investigation unambiguously demonstrate that aqueous solution-based processing can be used for fabrication of these composites in relatively shorter time in an environmental friendly manner without using any expensive equipment. The approach is capable of yielding composites with different phases in the matrix by simple variation of precursor materials and solutions. The small crystallite sizes, fine particle distribution and low carbothermal reduction temperatures are some of the specific merits of the proposed method.
引用
收藏
页码:493 / 502
页数:9
相关论文
共 50 条
  • [41] Cellulosic fibre-reinforced green composites
    John, Maya Jacob
    Anandjiwala, Rajesh D.
    Pothan, Laly A.
    Thomas, Sabu
    COMPOSITE INTERFACES, 2007, 14 (7-9) : 733 - 751
  • [42] Mechanical and thermal insulation properties of carbon fibre-reinforced carbon aerogel composites
    Li, Longlong
    Feng, Junzong
    Liu, Fengqi
    Li, Liangjun
    Jiang, Yonggang
    Feng, Jian
    ADVANCES IN APPLIED CERAMICS, 2022, 121 (5-8) : 222 - 230
  • [43] Computational models for fibre-reinforced composites
    Kompis, V.
    Stiavnicky, M.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING AND COMPUTATIONAL MECHANICS, 2009, 162 (01) : 39 - 43
  • [44] Friction surface evolution of carbon fibre reinforced carbon/silicon carbide (Cf/C-SiC) Composites
    Wang, Yuan
    Wu, Houzheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (15) : 3187 - 3201
  • [45] Carbon-fiber-reinforced silicon carbide composites
    He, XB
    Zhang, XM
    Zhang, CR
    Zhou, XG
    Zhou, AC
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (05) : 417 - 419
  • [46] Microstructure and mechanical properties of 3D needled carbon fibre reinforced carbon and silicon carbide composites
    Zhuan, Li
    Peng, Xiao
    Xiang, Xiong
    ADVANCED MATERIALS AND PROCESSES, PTS 1-3, 2011, 311-313 : 2059 - 2062
  • [47] Failure phenomena in fibre-reinforced composites. Part 6: a finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites
    van den Heuvel, PWJ
    Goutianos, S
    Young, RJ
    Peijs, T
    COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (05) : 645 - 656
  • [48] Time-dependent damage in carbon fibre-reinforced polymer composites
    Raghavan, J
    Meshii, M
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1996, 27 (12) : 1223 - 1227
  • [49] Impact fatigue behaviour of carbon fibre-reinforced vinylester resin composites
    Rita Roy
    B. K. Sarkar
    A. K. Rana
    N. R. Bose
    Bulletin of Materials Science, 2001, 24 : 79 - 86
  • [50] Effect of alumina nanoparticles on the thermal properties of carbon fibre-reinforced composites
    Rallini, Marco
    Natali, Maurizio
    Monti, Marco
    Kenny, Jose M.
    Torre, Luigi
    FIRE AND MATERIALS, 2014, 38 (03) : 339 - 355