A method to predict solar photovoltaic soiling using artificial neural networks and multiple linear regression models

被引:0
|
作者
Kudzanayi Chiteka
Rajesh Arora
S. N. Sridhara
机构
[1] Amity University,Department of Mechanical Engineering, Amity School of Engineering and Technology
来源
Energy Systems | 2020年 / 11卷
关键词
Soiling; Photovoltaic performance; Feature selection; Artificial neural networks; Multiple linear regression;
D O I
暂无
中图分类号
学科分类号
摘要
The adverse effects on performance and reliability of soiling on solar photovoltaics are the major areas of concern in today’s era. Environmental and meteorological solar photovoltaic soiling parameters were investigated for three 100Wp PV collectors installed at Harare Institute of Technology, Harare, Zimbabwe. The Boruta algorithm implemented in the random forest technique was used to select the most influential parameters in a given set of parameters used in soiling predictive modelling. Five most important variables which are PM10, relative humidity, precipitation, wind speed and wind direction were identified and used in modelling. Two soiling predictive models were developed using Artificial Neural Networks together with Multiple Linear Regression. The five selected most influential soiling variables were used in the two predictive models and the performance of the models was adequate with Radj2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{adj}^{2} $$\end{document} of 97.91% and 79.69%, respectively, for Artificial Neural Networks and Multiple Linear Regression. Moreover, the Residual Mean Square Error Values for the two models were 1.16% and 4.9% with Mean Absolute Percentage Errors of 6.3% and 10.6%, respectively, for Artificial Neural Networks and Multiple Linear Regression. The measured data indicated a mean daily loss in efficiency η¯l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {\overline{\eta }_{l} } \right) $$\end{document} of 0.083% and a standard deviation of σl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {\sigma_{l} } \right) $$\end{document} of 0.00973%. The investigation revealed that soiling prediction is of paramount importance as it give the basis for the determination of mitigation activities. If the energy loss due to soiling is known in advance, cleaning procedures will be planned ahead of time. The energy supply by such a solar photovoltaic system will be known in advance leading to the determination of an alternative energy source to cater for the deficit created by the anticipated energy loss due to soiling and the subsequent cleaning procedure.
引用
收藏
页码:981 / 1002
页数:21
相关论文
共 50 条
  • [11] A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION MODELS AS IN PREDICTORS OF FABRIC WEFT DEFECTS
    Kargi, V. Sinem Arikan
    TEKSTIL VE KONFEKSIYON, 2014, 24 (03): : 309 - 316
  • [12] Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression
    Piloto-Rodriguez, Ramon
    Sanchez-Borroto, Yisel
    Lapuerta, Magin
    Goyos-Perez, Leonardo
    Verhelst, Sebastian
    ENERGY CONVERSION AND MANAGEMENT, 2013, 65 : 255 - 261
  • [13] Prediction of Anthropometric Dimensions Using Multiple Linear Regression and Artificial Neural Network Models
    Zanwar D.R.
    Zanwar H.D.
    Shukla H.M.
    Deshpande A.A.
    Journal of The Institution of Engineers (India): Series C, 2023, 104 (02) : 307 - 314
  • [14] Comparison of hot rolled steel mechanical property prediction models using linear multiple regression, non-linear multiple regression and non-linear artificial neural networks
    Jones, DM
    Watton, J
    Brown, KJ
    IRONMAKING & STEELMAKING, 2005, 32 (05) : 435 - 442
  • [15] Egg hatchability prediction by multiple linear regression and artificial neural networks
    Bolzan, A. C.
    Machado, R. A. F.
    Piaia, J. C. Z.
    BRAZILIAN JOURNAL OF POULTRY SCIENCE, 2008, 10 (02) : 97 - 102
  • [16] A Critical Comparison of Regression Models and Artificial Neural Networks to Predict Ground Vibrations
    Ram Chandar K.
    Sastry V.R.
    Hegde C.
    Geotechnical and Geological Engineering, 2017, 35 (2) : 573 - 583
  • [17] QSAR of Antitrypanosomal Activities of Polyphenols and their Analogues Using Multiple Linear Regression and Artificial Neural Networks
    Rastija, Vesna
    Masand, Vijay H.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2014, 17 (08) : 709 - 717
  • [18] Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression
    Melo-Espinosa, Eliezer Ahmed
    Sanchez-Borroto, Yisel
    Errasti, Michel
    Piloto-Rodriguez, Ramon
    Sierens, Roger
    Roger-Riba, Jordi
    Christopher-Hansen, Alan
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 886 - +
  • [19] Comparison of retention modeling in ion chromatography by using multiple linear regression and artificial neural networks
    Bolanca, T
    Cerjan-Stefanovic, S
    Srecnik, G
    Debeljak, Z
    Novic, M
    SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (06) : 1333 - 1352
  • [20] Short-Term Load Forecasting using Artificial Neural Networks and Multiple Linear Regression
    Govender, Sahil
    Folly, Komla A.
    2019 IEEE PES/IAS POWERAFRICA, 2019, : 273 - 278