Synchronization-optimized networks for coupled nearly identical oscillators and their structural analysis

被引:0
|
作者
SUMAN ACHARYYA
R E AMRITKAR
机构
[1] Physical Research Laboratory,Theoretical Physics Division
[2] Institute of Infrastructure Technology Research and Management,undefined
来源
Pramana | 2015年 / 84卷
关键词
Synchronization; coupled oscillators; optimization.; 05.45.Xt; 02.60.Pn;
D O I
暂无
中图分类号
学科分类号
摘要
The extension of the master stability function (MSF) to analyse stability of generalized synchronization for coupled nearly identical oscillators is discussed. The nearly identical nature of the coupled oscillators is due to some parameter mismatch while the dynamical equations are the same for all the oscillators. From the stability criteria of the MSF, we construct optimal networks with better synchronization property, i.e., the synchronization is stable for widest possible range of coupling parameters. In the optimized networks the nodes with parameter value at one extreme are selected as hubs. The pair of nodes with larger parameter difference are preferred to create links in the optimized networks, and the optimized networks are found to be disassortative in nature, i.e., the nodes with high degree tend to connect with nodes with low degree.
引用
收藏
页码:173 / 182
页数:9
相关论文
共 50 条
  • [31] Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators
    Zanette, DH
    EUROPEAN PHYSICAL JOURNAL B, 2005, 43 (01): : 97 - 108
  • [32] Synchronization of coupled oscillators on small-world networks
    Mori, Fumito
    Odagaki, Takashi
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1180 - 1185
  • [33] Generalized synchronization in mutually coupled oscillators and complex networks
    Moskalenko, Olga I.
    Koronovskii, Alexey A.
    Hramov, Alexander E.
    Boccaletti, Stefano
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [34] Exponential synchronization of stochastic coupled oscillators networks with delays
    Zhang, Chunmei
    Li, Wenxue
    Wang, Ke
    APPLICABLE ANALYSIS, 2017, 96 (06) : 1058 - 1075
  • [35] Nature of synchronization transitions in random networks of coupled oscillators
    Um, Jaegon
    Hong, Hyunsuk
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2014, 89 (01)
  • [36] Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators
    Awadhesh Prasad
    Leon D. Iasemidis
    Shivkumar Sabesan
    Kostas Tsakalis
    Pramana, 2005, 64 : 513 - 523
  • [37] Synchrony-optimized networks of non-identical Kuramoto oscillators
    Brede, Markus
    PHYSICS LETTERS A, 2008, 372 (15) : 2618 - 2622
  • [38] Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators
    Prasad, A
    Iasemidis, LD
    Sabesan, S
    Tsakalis, K
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (04): : 513 - 523
  • [39] Synchronization of coupled benchmark oscillators: analysis and experiments
    Shyam Krishan Joshi
    Shaunak Sen
    Indra Narayan Kar
    International Journal of Dynamics and Control, 2022, 10 : 577 - 597
  • [40] Numerical Analysis of the Synchronization of Coupled Chemical Oscillators
    E. S. Kurkina
    E. D. Kuretova
    Computational Mathematics and Modeling, 2004, 15 (1) : 38 - 51