Automated classification of time-activity-location patterns for improved estimation of personal exposure to air pollution

被引:0
|
作者
Lia Chatzidiakou
Anika Krause
Mike Kellaway
Yiqun Han
Yilin Li
Elizabeth Martin
Frank J. Kelly
Tong Zhu
Benjamin Barratt
Roderic L. Jones
机构
[1] Yusuf Hamied Department of Chemistry,
[2] University of Cambridge,undefined
[3] Institute for Chemistry,undefined
[4] University of Potsdam,undefined
[5] Atmospheric Sensors Ltd,undefined
[6] Environmental Research Group,undefined
[7] MRC Centre for Environment and Health,undefined
[8] Imperial College London,undefined
[9] BIC-ESAT and SKL-ESPC,undefined
[10] College of Environmental Sciences and Engineering,undefined
[11] Center for Environment and Health,undefined
[12] Peking University,undefined
来源
关键词
Portable sensor technologies; Multi-pollutant personal exposure; Automated time-activity classification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Personal exposure to equivalent black carbon in children in Milan, Italy: Time-activity patterns and predictors by season
    Boniardi, Luca
    Dons, Evi
    Longhi, Francesca
    Scuffi, Chiara
    Campo, Laura
    Van Poppel, Martine
    Panis, Luc Int
    Fustinoni, Silvia
    ENVIRONMENTAL POLLUTION, 2021, 274
  • [32] Time-activity-patterns of some selected small groups as a basis for exposure estimation: A methodological study
    Dorre, WH
    JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 1997, 7 (04): : 471 - 491
  • [33] Personal exposure to ultrafine particles: Two-level statistical modeling of background exposure and time-activity patterns during three seasons
    Veronika Deffner
    Helmut Küchenhoff
    Verena Maier
    Mike Pitz
    Josef Cyrys
    Susanne Breitner
    Alexandra Schneider
    Jianwei Gu
    Uta Geruschkat
    Annette Peters
    Journal of Exposure Science & Environmental Epidemiology, 2016, 26 : 17 - 25
  • [34] Personal exposure to ultrafine particles: Two-level statistical modeling of background exposure and time-activity patterns during three seasons
    Deffner, Veronika
    Kuechenhoff, Helmut
    Maier, Verena
    Pitz, Mike
    Cyrys, Josef
    Breitner, Susanne
    Schneider, Alexandra
    Gu, Jianwei
    Geruschkat, Uta
    Peters, Annette
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2016, 26 (01) : 17 - 25
  • [35] Assessing the degree of personal exposure to PM 2.5 in growing cities of Rwanda based on time-activity patterns and microenvironments
    Kagabo, Abdou Safari
    Safari, Bonfils
    Gasore, Jimmy
    Mutai, Bethwel Kipkoech
    CITY AND ENVIRONMENT INTERACTIONS, 2024, 24
  • [37] Integrating data from multiple time-location measurement methods for use in exposure assessment: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)
    Marnie F Hazlehurst
    Elizabeth W Spalt
    Cynthia L Curl
    Mark E Davey
    Sverre Vedal
    Gregory L Burke
    Joel D Kaufman
    Journal of Exposure Science & Environmental Epidemiology, 2017, 27 : 569 - 574
  • [38] Integrating data from multiple time-location measurement methods for use in exposure assessment: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)
    Hazlehurst, Marnie F.
    Spalt, Elizabeth W.
    Curl, Cynthia L.
    Davey, Mark E.
    Vedal, Sverre
    Burke, Gregory L.
    Kaufman, Joel D.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2017, 27 (06) : 569 - 574
  • [39] Microenvironment Tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: model evaluation using smartphone data
    Breen, Michael S. S.
    Xu, Yadong
    Frey, H. Christopher
    Breen, Miyuki
    Isakov, Vlad
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2023, 33 (03) : 407 - 415
  • [40] Microenvironment Tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: model evaluation using smartphone data
    Michael S. Breen
    Yadong Xu
    H. Christopher Frey
    Miyuki Breen
    Vlad Isakov
    Journal of Exposure Science & Environmental Epidemiology, 2023, 33 : 407 - 415