A Possibilistic Approach of the Max-Product Bernstein Kind Operators

被引:0
|
作者
Sorin G. Gal
机构
[1] University of Oradea,Department of Mathematics and Computer Science
来源
Results in Mathematics | 2014年 / 65卷
关键词
41A36; 60A10; 60E15; 28E10; Approximation by max-product Bernstein kind operator; theory of possibility; possibility distribution; Chebyshev type inequality;
D O I
暂无
中图分类号
学科分类号
摘要
By analogy with the probabilistic approach of the classical Bernstein polynomials, in this paper firstly we give the proof for the uniform convergence of the nonlinear max-product Bernstein operator by using the theory of possibility. This new approach, which interprets the max-product Bernstein operator as a possibilistic expectation of a particular fuzzy variable having a possibilistic Bernoulli distribution, does not only offer a good justification for the max-product Bernstein operator, but also allows to extend the method to other discrete max-product Bernstein type operators.
引用
收藏
页码:453 / 462
页数:9
相关论文
共 50 条
  • [21] On Approximation by Max-product Shepard Operators
    Yu, Dansheng
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [22] On Approximation by Max-product Shepard Operators
    Dansheng Yu
    Results in Mathematics, 2022, 77
  • [23] Summation Process by Max-Product Operators
    Gokcer, Turkan Yeliz
    Duman, Oktay
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 59 - 67
  • [24] Max-Product Shepard Approximation Operators
    Bede, Barnabas
    Nobuhara, Hajime
    Fodor, Janos
    Hirota, Kaoru
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2006, 10 (04) : 494 - 497
  • [25] Approximation by N-dimensional max-product and max-min kind discrete operators with applications
    Aslan, Ismail
    Ellidokuz, Turkan Yeliz Gokcer
    FILOMAT, 2024, 38 (05) : 1825 - 1845
  • [26] ITERATIONS AND FIXED POINTS FOR THE BERNSTEIN MAX-PRODUCT OPERATOR
    Balaj, Mircea
    Coroianu, Lucian
    Gal, Sorin G.
    Muresan, Sorin
    FIXED POINT THEORY, 2013, 14 (01): : 39 - 52
  • [27] Saturation and inverse results for the Bernstein max-product operator
    Coroianu, Lucian
    Gal, Sorin G.
    PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (02) : 126 - 133
  • [28] Saturation and inverse results for the Bernstein max-product operator
    Lucian Coroianu
    Sorin G. Gal
    Periodica Mathematica Hungarica, 2014, 69 : 126 - 133
  • [29] Conformable fractional approximation by max-product operators
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 3 - 22
  • [30] Statistical convergence of max-product approximating operators
    Duman, Oktay
    TURKISH JOURNAL OF MATHEMATICS, 2010, 34 (04) : 501 - 514