Artificial intelligence in oncological radiology A (p)review

被引:1
|
作者
Bucher, Andreas M. [1 ]
Kleesiek, Jens [2 ]
机构
[1] Univ Klinikum Frankfurt Main, Inst Diagnost & Intervent Radiol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
[2] Univ Med Essen, Inst KI Med IKIM, Translat Bildgestutzte Onkol, Essen, Germany
来源
RADIOLOGE | 2021年 / 61卷 / 01期
关键词
Deep learning; Machine learning; Regulatory affairs; Digital transformation; Commercial software; BREAST-CANCER; FUTURE; GUIDELINES; DIAGNOSIS; WATSON; AI;
D O I
10.1007/s00117-020-00787-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Artificial intelligence (AI) has the potential to fundamentally change medicine within the coming decades. Radiological imaging is one of the primary fields of its clinical application. Objectives In this article, we summarize previous AI developments with a focus on oncological radiology. Based on selected examples, we derive scenarios for developments in the next 10 years. Materials and methods This work is based on a review of various literature and product databases, publications by regulatory authorities, reports, and press releases. Conclusions The clinical use of AI applications is still in an early stage of development. The large number of research publications shows the potential of the field. Several certified products have already become available to users. However, for a widespread adoption of AI applications in clinical routine, several fundamental prerequisites are still awaited. These include the generation of evidence justifying the use of algorithms through representative clinical studies, adjustments to the framework for approval processes and dedicated education and teaching resources for its users. It is expected that use of AI methods will increase, thus, creating new opportunities for improved diagnostics, therapy, and more efficient workflows.
引用
收藏
页码:52 / 59
页数:8
相关论文
共 50 条
  • [31] Artificial Intelligence in Oncological Hybrid Imaging
    Feuerecker, Benedikt
    Heimer, Maurice M.
    Geyer, Thomas
    Fabritius, Matthias P.
    Gu, Sijing
    Schachtner, Balthasar
    Beyer, Leonie
    Ricke, Jens
    Gatidis, Sergios
    Ingrisch, Michael
    Cyran, Clemens C.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2023, 195 (02): : 105 - 114
  • [32] Artificial Intelligence in Oncological Hybrid Imaging
    Feuerecker, Benedikt
    Heimer, Maurice M.
    Geyer, Thomas
    Fabritius, Matthias P.
    Gu, Sijing
    Schachtner, Balthasar
    Beyer, Leonie
    Ricke, Jens
    Gatidis, Sergios
    Ingrisch, Michael
    Cyran, Clemens C.
    NUKLEARMEDIZIN-NUCLEAR MEDICINE, 2023, 62 (05): : 296 - 305
  • [33] Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology
    Kim, Yisak
    Park, Ji Yoon
    Hwang, Eui Jin
    Lee, Sang Min
    Park, Chang Min
    JOURNAL OF THORACIC DISEASE, 2021, 13 (12) : 6943 - 6962
  • [34] Correction to: Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
    Brendan S. Kelly
    Conor Judge
    Stephanie M. Bollard
    Simon M. Clifford
    Gerard M. Healy
    Awsam Aziz
    Prateek Mathur
    Shah Islam
    Kristen W. Yeom
    Aonghus Lawlor
    Ronan P. Killeen
    European Radiology, 2022, 32 : 8054 - 8054
  • [35] Artificial Intelligence for Radiation Dose Optimization in Pediatric Radiology: A Systematic Review
    Ng, Curtise K. C.
    CHILDREN-BASEL, 2022, 9 (07):
  • [36] Current applications of algorithmic artificial intelligence in interventional radiology: A review of the literature
    O'Brien, Andrew J.
    Vrazas, John, I
    Clements, Warren
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2024, 68 (02) : 194 - 207
  • [37] Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review
    de Vries, Bart M.
    Zwezerijnen, Gerben J. C.
    Burchell, George L.
    van Velden, Floris H. P.
    van Oordt, Catharina Willemien Menke-van der Houven
    Boellaard, Ronald
    FRONTIERS IN MEDICINE, 2023, 10
  • [38] Explainable Artificial Intelligence (XAI) for Oncological Ultrasound Image Analysis: A Systematic Review
    Wyatt, Lucie S.
    van Karnenbeek, Lennard M.
    Wijkhuizen, Mark
    Geldof, Freija
    Dashtbozorg, Behdad
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [39] Clinical applications of artificial intelligence in radiology
    Mello-Thoms, Claudia
    Mello, Carlos A. B.
    BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1150):
  • [40] Artificial intelligence in oral medicine and radiology
    Parihar, Ajay Pratap Singh
    JOURNAL OF INDIAN ACADEMY OF ORAL MEDICINE AND RADIOLOGY, 2019, 31 (04) : 285 - 285