The positive Schur property on positive projective tensor products and spaces of regular multilinear operators

被引:0
|
作者
Geraldo Botelho
Qingying Bu
Donghai Ji
Khazhak Navoyan
机构
[1] Universidade Federal de Uberlândia,Faculdade de Matemática
[2] University of Mississippi,Department of Mathematics
[3] Harbin University of Science and Technology,Department of Mathematics
来源
关键词
Banach lattices; Positive Schur property; Regular multilinear operators; Positive projective tensor product; 46B42; 46G25; 46M05; 46B28;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the positive Schur property in the positive projective tensor products of Banach lattices, we establish the connection with the weak operator topology and we give necessary and sufficient conditions for the space of regular multilinear operators/homogeneous polynomials taking values in a Dedekind complete Banach lattice to have the positive Schur property.
引用
收藏
页码:565 / 578
页数:13
相关论文
共 50 条
  • [31] On positive Cohen weakly nuclear multilinear operators
    Bougoutaia, A.
    Belacel, A.
    Macedo, R.
    Hamdi, H.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 396 - 410
  • [32] Pseudo-automorphisms of positive entropy on the blowups of products of projective spaces
    Perroni, Fabio
    Zhang, De-Qi
    MATHEMATISCHE ANNALEN, 2014, 359 (1-2) : 189 - 209
  • [33] Pseudo-automorphisms of positive entropy on the blowups of products of projective spaces
    Fabio Perroni
    De-Qi Zhang
    Mathematische Annalen, 2014, 359 : 189 - 209
  • [35] Products of positive operators
    Murphy, GJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) : 3675 - 3677
  • [36] Products of Positive Operators
    Maximiliano Contino
    Michael A. Dritschel
    Alejandra Maestripieri
    Stefania Marcantognini
    Complex Analysis and Operator Theory, 2021, 15
  • [37] Products of Positive Operators
    Contino, Maximiliano
    Dritschel, Michael A.
    Maestripieri, Alejandra
    Marcantognini, Stefania
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)
  • [38] PRODUCTS OF POSITIVE OPERATORS
    BERNAU, SJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1974, 76 (SEP): : 415 - 416
  • [39] Projective Schur algebras over a field of positive characteristic
    Choi, E
    Lee, H
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 103 - 106