Primal-dual active set method for evaluating American put options on zero-coupon bonds

被引:0
|
作者
Zhang, Qi [1 ,3 ]
Wang, Qi [1 ]
Song, Haiming [2 ]
Hao, Yongle [4 ]
机构
[1] Shenyang Univ Technol, Sch Sci, Shenyang 110870, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
[4] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
基金
中国国家自然科学基金;
关键词
American bond options; Linear complementarity problem; Variational inequality; Primal-dual active set method; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s40314-024-02729-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient numerical method is propoesd for a parabolic linear complementarity problem (LCP) arising in the valuation of American options on zero-coupon bonds under the Cox-Ingersoll-Ross (CIR) model. With variable substitutions, we first transform the original pricing problem into a degenerated linear complementarity problem on a bounded domain, and present a corresponding variational inequality (VI). We then give the full discretization scheme of VI constructed by finite element and finite difference methods in spatial and temporal directions, respectively. Within the framework of VI, the stability and the rate of convergence are obtained. Moreover, for the resulted discretised variational inequality, we present a primal-dual active set (PDAS) method to solve it. Numerical results are carried out to test the usefulness of the proposed method compared with existing methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Image denoising via K-SVD with primal-dual active set algorithm
    Xiao, Quan
    Wen, Canhong
    Yan, Zirui
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2444 - 2452
  • [42] A finite deformation mortar contact formulation using a primal-dual active set strategy
    Popp, Alexander
    Gee, Michael W.
    Wall, Wolfgang A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) : 1354 - 1391
  • [43] A primal-dual active set strategy for non-linear multibody contact problems
    Hüeber, S
    Wohlmuth, BI
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) : 3147 - 3166
  • [44] GLOBALLY CONVERGENT PRIMAL-DUAL ACTIVE-SET METHODS WITH INEXACT SUBPROBLEM SOLVES
    Curtis, Frank E.
    Han, Zheng
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (04) : 2261 - 2283
  • [46] A front-fixing method for American option pricing on zero-coupon bond under the Hull and White model
    Company, Rafael
    Egorova, Vera N.
    Jodar, Lucas
    Peris, Jorge
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (06) : 3334 - 3344
  • [47] Primal-dual quasi-Monte Carlo simulation with dimension reduction for pricing American options
    Xiang, Jiangming
    Wang, Xiaoqun
    QUANTITATIVE FINANCE, 2020, 20 (10) : 1701 - 1720
  • [48] A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction
    Hueeber, S.
    Stadler, G.
    Wohlmuth, B. I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 572 - 596
  • [49] Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints
    Blank, Luise
    Garcke, Harald
    Sarbu, Lavinia
    Styles, Vanessa
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) : 999 - 1030
  • [50] Inexact primal-dual active set iteration for optimal distribution control of stationary heat or cold source
    Hu, Mengdi
    Song, Haiming
    Wu, Jiageng
    Yang, Jinda
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (01) : 235 - 253