This paper is the second part of paper (Grishkov and Guerreiro in São Paulo J Math Sci v4(1):93–107, 2010) about simple 7-dimensional Lie algebras over an algebraically closed field k of characteristic two. In this paper we prove that all simple 7-dimensional Lie algebras over k of absolute toral rank three are isomorphic to the Cartan algebra W1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W_1$$\end{document} or the Hamilton algebra H2.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_2.$$\end{document} We hope to prove that those algebras are the unique simple 7-dimensional Lie algebras over the field k. Observe that in the case of absolute toral rank 2 this fact was proved in [2].
机构:
Equa Simulat AB, Rasundavagen 100, Solna, SwedenNew York Univ Abu Dhabi, Div Sci & Math, POB 129188, Abu Dhabi, U Arab Emirates
Lebedev, Alexei
论文数: 引用数:
h-index:
机构:
Leites, Dimitry
Shchepochkina, Irina
论文数: 0引用数: 0
h-index: 0
机构:
Independent Univ Moscow, Bolshoj Vlasievsky Per Dom 11, RU-119002 Moscow, RussiaNew York Univ Abu Dhabi, Div Sci & Math, POB 129188, Abu Dhabi, U Arab Emirates