On the classification of simple Lie algebras of dimension seven over fields of characteristic 2

被引:0
|
作者
Alexander Grishkov
Marinês Guerreiro
Wilian Francisco de Araujo
机构
[1] Universidade de São Paulo Rua do Matão 1010,Instituto de Matemática e Estatística
[2] Omsk State University,Departamento de Matemática, Centro de Ciências Exatas e Tecnológicas
[3] Universidade Federal de Viçosa,undefined
[4] Universidade Tecnológica Federal do Paraná,undefined
[5] R. Cristo Rei,undefined
关键词
Simple Lie algebra; Toral subalgebra; Absolute toral rank;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the second part of paper (Grishkov and Guerreiro in São Paulo J Math Sci v4(1):93–107, 2010) about simple 7-dimensional Lie algebras over an algebraically closed field k of characteristic two. In this paper we prove that all simple 7-dimensional Lie algebras over k of absolute toral rank three are isomorphic to the Cartan algebra W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_1$$\end{document} or the Hamilton algebra H2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2.$$\end{document} We hope to prove that those algebras are the unique simple 7-dimensional Lie algebras over the field k. Observe that in the case of absolute toral rank 2 this fact was proved in [2].
引用
下载
收藏
页码:703 / 713
页数:10
相关论文
共 50 条