Bifurcation and Chaos in the Duffing Oscillator with a PID Controller

被引:0
|
作者
Fangsen Cui
C. H. Chew
Jianxue Xu
Yuanli Cai
机构
[1] National University of Singapore,Department of Mechanical and Production Engineering
[2] Xi'an Jiaotong University,Institute of Engineering Mechanics
来源
Nonlinear Dynamics | 1997年 / 12卷
关键词
Bifurcation; chaos; Duffingoscillator; fractal basin boundary; PIDcontroller;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss in this paper the bifurcation, stability and chaos of the non-linear Duffing oscillator with a PID controller. Hopf bifurcation can occur and we show that there is a global stable fixed point. The PID controller works well in some fields of the parameter space, but in other fields of the parameter space, or if the reference input is not equal to zero, chaos is common for hard spring type system and so is fractal basin boundary for soft spring system. The Melnikov method is used to obtain the criterion of fractal basin boundary.
引用
收藏
页码:251 / 262
页数:11
相关论文
共 50 条
  • [21] Suppressing chaos in the duffing oscillator by impulsive actions
    Osipov, G
    Glatz, L
    Troger, H
    CHAOS SOLITONS & FRACTALS, 1998, 9 (1-2) : 307 - 321
  • [22] ON THE OCCURRENCE OF CHAOS IN VANDERPOL-DUFFING OSCILLATOR
    AWREJCEWICZ, J
    JOURNAL OF SOUND AND VIBRATION, 1986, 109 (03) : 519 - 522
  • [23] ANALYTICAL METHOD OF CONTROLLING CHAOS IN DUFFING OSCILLATOR
    KAPITANIAK, T
    JOURNAL OF SOUND AND VIBRATION, 1993, 163 (01) : 182 - 187
  • [24] A new chaos synchronization method for Duffing oscillator
    Ahn, Choon Ki
    IEICE ELECTRONICS EXPRESS, 2009, 6 (18): : 1355 - 1360
  • [25] Suppressing chaos in the Duffing oscillator by impulsive actions
    Osipov, G.
    Glatz, L.
    Troger, H.
    Chaos, solitons and fractals, 1998, 9 (1-2): : 307 - 321
  • [26] Bifurcation and chaos of some relative rotation system with triple-well Mathieu-Duffing oscillator
    Liu Bin
    Zhao Hong-Xu
    Hou Dong-Xiao
    ACTA PHYSICA SINICA, 2014, 63 (17)
  • [27] Bifurcation and route-to-chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method
    Shen, J. H.
    Lin, K. C.
    Chen, S. H.
    Sze, K. Y.
    NONLINEAR DYNAMICS, 2008, 52 (04) : 403 - 414
  • [28] Bifurcation and chaos in the piecewise-linear forced Duffing-van der Pol oscillator with a diode
    Inaba, N
    Tsukamoto, K
    Endo, T
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 1297 - 1300
  • [29] BIFURCATION TREES OF PERIOD-1 MOTION TO CHAOS IN A DUFFING OSCILLATOR WITH DOUBLE-WELL POTENTIAL
    Guo, Yu
    Luo, Albert C. J.
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 6, 2016,
  • [30] Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order feedback controller
    Chen, Lincong
    Zhao, Tianlong
    Li, Wei
    Zhao, Jun
    NONLINEAR DYNAMICS, 2016, 83 (1-2) : 529 - 539