Bispiral Approach for Calculation of Electron Paramagnetic and Nuclear Magnetic Resonance Powder Spectra

被引:0
|
作者
Valentin G. Grachev
机构
[1] SimuMag,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The simulation of powder spectra involves summation of spectra calculated for N reference directions of the external magnetic field. Usually, the directions are given by regularly or randomly distributed points on a sphere. Due to an excessive number of points with the same polar angle θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} but with different azimuthal angles φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document}, axial distributions produce jagged spectra, especially for spin systems with a weak azimuthal anisotropy. To improve the quality of the obtained spectra, a triangulation and subsequent interpolation of resonance fields/frequencies for hundreds of additional directions between triangle vertices or an average over a range of magnetic fields/frequencies (tent) are applied. A single spiral method with graduate steps for both the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document} and φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} angles works better for systems with weak azimuthal anisotropy but allows for only a few interpolation points along the spiral. The proposed bispiral approach combines the best features of both spiral and triangular approaches: exact calculations for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} reference spiral directions, joining of neighboring points of two spirals into a triangular net, and interpolation over hundreds of additional directions or the tent average. For systems with C1 symmetry, the angular space between primary and complementary spirals is exactly equal to the phase space of the magnetic fields (hemisphere). For systems with higher symmetry, the angular space can be significantly reduced by choosing the φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document}-shift for the second spiral, on par with the space reduction for axial distributions. Spectra simulated for axial, random, and bispiral distributions with two-dimensional interpolation over triangles and for the semispiral grid with one-dimensional interpolation are compared.
引用
收藏
页码:1481 / 1503
页数:22
相关论文
共 50 条
  • [31] ON THE SHIFT OF THE NUCLEAR MAGNETIC RESONANCE IN PARAMAGNETIC SOLUTIONS
    BLOEMBERGEN, N
    DICKINSON, WC
    [J]. PHYSICAL REVIEW, 1950, 79 (01): : 179 - 180
  • [32] Nuclear Magnetic Resonance and Electron Paramagnetic Resonance as Analytical Tools To Investigate Structural Features of Archaeological Leathers
    Bardet, Michel
    Gerbaud, Guillaume
    Le Pape, Laurent
    Hediger, Sabine
    Tran, Quoc-Khoi
    Boumlil, Nbia
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (04) : 1505 - 1511
  • [33] ELECTRON-PARAMAGNETIC RESONANCE AND NUCLEAR MAGNETIC-RESONANCE STUDIES OF LIPID-WATER SYSTEMS
    BASOSI, R
    GAGGELLI, E
    TIEZZI, E
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1980, 76 : 96 - 100
  • [34] ELECTRON DELOCALIZATION IN PARAMAGNETIC METALLOCENCES .I. NUCLEAR MAGNETIC RESONANCE CONTACT SHIFTS
    RETTIG, MF
    DRAGO, RS
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1969, 91 (06) : 1361 - &
  • [35] Generalized open quantum system approach for the electron paramagnetic resonance of magnetic atoms
    Shavit, Gal
    Horovitz, Baruch
    Goldstein, Moshe
    [J]. PHYSICAL REVIEW B, 2019, 99 (19)
  • [36] Electron paramagnetic resonance spectra in fullerite and detonation diamond
    S. S. Batsanov
    S. M. Gavrilkin
    A. S. Leskov
    I. N. Temnitskii
    [J]. Combustion, Explosion and Shock Waves, 1999, 35 : 441 - 442
  • [37] LEAST SQUARES ANALYSIS OF ELECTRON PARAMAGNETIC RESONANCE SPECTRA
    MARQUARDT, D
    BURRELL, EJ
    BENNETT, RG
    [J]. JOURNAL OF MOLECULAR SPECTROSCOPY, 1961, 7 (04) : 269 - &
  • [38] ELECTRON PARAMAGNETIC RESONANCE SPECTRA OF SOME NEW RADICALS
    BUCHACHENKO, AL
    [J]. OPTIKA I SPEKTROSKOPIYA, 1962, 13 (06): : 795 - 800
  • [39] ELUCIDATION OF SPECTRA OF ELECTRON PARAMAGNETIC RESONANCE OF PLANT LIPIDS
    KOHL, DH
    WEISSMAN, M
    [J]. BIOPHYSICS-USSR, 1970, 15 (03): : 454 - &
  • [40] On the analysis of broad Dysonian electron paramagnetic resonance spectra
    Joshi, JP
    Bhat, SV
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2004, 168 (02) : 284 - 287